Reproducibility of Turnover Rates in Heterogeneous Metal Catalysis: Compilation of Data and Guidelines for Data Analysis

Abstract The combination of turnover rate measurements and surface science techniques allows a firm quantification of rates in heterogeneous catalysis by metals. There are many examples of reactions where the turnover rates from different laboratories are the same. However, there are still problems, as in the isomerization and hydrogenolysis of hydrocarbons over noble metals, where the turnovers rates from different laboratories differ by many orders of magnitude. An explanation for this discrepancy is discussed. Guidelines for experimental work in heterogeneous catalysis that will help to minimize this wide scatter of turnover rates in the future are presented. ∗Current address: Department of Chemical Engineering, Worcester Polytechnic Institute, Worcerster, MA 01609-2280.

[1]  Michel Boudart,et al.  Kinetics of Heterogeneous Catalytic Reactions , 1984 .

[2]  M. Boudart,et al.  Structure sensitivity of hydrocarbon synthesis from carbon monoxide and hydrogen , 1984 .

[3]  G. Somorjai,et al.  In situ scanning tunneling microscopy study of platinum (110) in a reactor cell at high pressures and temperatures , 1993 .

[4]  J. Schwank Chapter 6 Bimetallic Catalysts for Co Activation , 1991 .

[5]  M. Salmeron,et al.  Ethylene hydrogenation and ethane hydrogenolysis on a Rh foil with titania overlayers , 1988 .

[6]  G. Somorjai,et al.  SURFACE STRUCTURE AND TEMPERATURE DEPENDENCE OF LIGHT-ALKANE SKELETAL REARRANGEMENT REACTIONS CATALYZED OVER PLATINUM SINGLE-CRYSTAL SURFACES , 1982 .

[7]  G. Somorjai,et al.  Promotion of CO and CO2 Hydrogenation over Rh by Metal Oxides: The Influence of Oxide Lewis Acidity and Reducibility , 1994 .

[8]  C. Peden,et al.  Kinetics of CO oxidation on single-crystal Pd, Pt, and Ir , 1988 .

[9]  J. Butt,et al.  Activation, Deactivation, and Poisoning of Catalysts , 1988 .

[10]  E. Iglesia,et al.  Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity , 1992 .

[11]  M. Hove,et al.  Adsorption and adsorbate-induced restructuring: a LEED perspective , 1994 .

[12]  G. Bond,et al.  Hydrogenolysis of alkanes. Part 1.—Hydrogenolysis of ethane, propane and n-butane on 6% Pt/SiO2(EUROPT-1) , 1984 .

[13]  J. Sinfelt Kinetics of Ethylene Hydrogenation over a Platinum—Silica Catalyst , 1964 .

[14]  D. Goodman,et al.  High pressure catalytic reactions over single-crystal metal surfaces , 1991 .

[15]  G. Somorjai,et al.  Hydrogenation of ethylene over platinum (111) single-crystal surfaces , 1984 .

[16]  J. Dumesic,et al.  Kinetic simulation of ammonia synthesis catalysis , 1989 .

[17]  C. Bennett,et al.  The Influence of Particle Size on the Catalytic Properties of Supported Metals , 1989 .

[18]  M. Boudart,et al.  Experimental criterion for the absence of artifacts in the measurement of rates of heterogeneous catalytic reactions , 1982 .

[19]  S. Wind,et al.  New model catalysts: uniform platinum cluster arrays produced by electron beam lithography , 1996 .

[20]  M. Boudart Ammonia synthesis: The bellwether reaction in heterogeneous catalysis , 1994 .

[21]  M. Boudart,et al.  Surface structure of iron catalysts for ammonia synthesis , 1984 .

[22]  Rocco Anthony Fiato,et al.  Bimetallic Synergy in Cobalt Ruthenium Fischer-Tropsch Synthesis Catalysts , 1993 .

[23]  Gabor A. Somorjai,et al.  Transformation of Platinum into a Stable, High-Temperature, Dehydrogenation-Hydrogenation Catalyst by Ensemble Size Reduction with Rhenium and Sulfur , 1994 .

[24]  Arun S. Mujumdar,et al.  Introduction to Surface Chemistry and Catalysis , 1994 .

[25]  G. Ertl,et al.  Microfacetting of a Pt(110) surface during catalytic CO oxidation , 1988 .

[26]  C. H. Bartholomew,et al.  Multiple reaction states in CO hydrogenation on alumina-supported cobalt catalysts , 1989 .

[27]  J. Sinfelt,et al.  Bimetallic Catalysts: Discoveries, Concepts, and Applications , 1983 .

[28]  Patricio Reyes,et al.  React. Kinet. Catal. Lett. , 1974 .

[29]  Charles N. Satterfield,et al.  Intrinsic kinetics of the Fischer-Tropsch synthesis on a reduced fused-magnetite catalyst , 1984 .

[30]  R. Moss,et al.  The structure and activity of supported metal catalysts: IV. Ethylene hydrogenation on platinum/silica catalysts , 1969 .

[31]  E. W. Kuipers,et al.  Deposition of nanocrystals on flat supports by spin-coating , 1993 .

[32]  G. Somorjai,et al.  Mechanism of catalysis of hydrocarbon reactions by platinum surfaces , 1975, Nature.

[33]  J. Yates,et al.  Kinetics of the hydrogenation of CO over a single crystal nickel catalyst , 1980 .

[34]  L. Guczi New trends in CO activation , 1991 .

[35]  D. W. Goodman,et al.  Comparative kinetic studies of CO$z.sbnd;O2 and CO$z.sbnd;NO reactions over single crystal and supported rhodium catalysts , 1986 .

[36]  R. D. Betta,et al.  Fraction of Pt surface covered with coke following hydrogenolysis of hexane , 1992 .

[37]  C. H. Bartholomew,et al.  Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of cobalt , 1984 .

[38]  D. Goodman,et al.  An infrared and kinetic study of carbon monoxide oxidation on model silica-supported palladium catalysts from 10-9 to 15 Torr , 1993 .

[39]  M. Vannice,et al.  The catalytic synthesis of hydrocarbons from H2CO mixtures over the group VIII metals: II. The kinetics of the methanation reaction over supported metals , 1975 .

[40]  C. Satterfield,et al.  Intrinsic kinetics of the Fischer-Tropsch synthesis on a cobalt catalyst , 1991 .

[41]  Dale F. Rudd,et al.  The Microkinetics of heterogeneous catalysis , 1993 .

[42]  S. Bradley,et al.  Characterization and catalyst development : an interactive approach , 1989 .

[43]  A. Davidlogan Steady-state co oxidation kinetics over the Pd(100) single crystal surface and the c(2 × 2)-Sn/Pd(100) bimetallic surface alloy , 1992 .

[44]  B. Johnson The role of surface structure and dispersion in CO hydrogenation on cobalt , 1991 .

[45]  M. D. Croon,et al.  The kinetics and mechanism of the methanation of carbon monoxide on a nickel-silica catalyst , 1982 .

[46]  R. V. Hardeveld,et al.  The statistics of surface atoms and surface sites on metal crystals , 1969 .

[47]  C. H. Bartholomew,et al.  Sulfur Poisoning of Metals , 1982 .

[48]  E. Nowak,et al.  A diagnostic test of the kinetic regime in a packed bed reactor , 1967 .

[49]  W. Sachtler,et al.  Incorporation of surface carbon into hydrocarbons during Fischer-Tropsch synthesis: Mechanistic implications , 1979 .

[50]  J. W. Mitchell,et al.  Slurry-phase Fischer-Tropsch synthesis and kinetic studies over supported cobalt carbonyl derived catalysts , 1990 .

[51]  J. Nørskov,et al.  An interpretation of the high-pressure kinetics of ammonia synthesis based on a microscopic model , 1988 .

[52]  M. Vannice The catalytic synthesis of hydrocarbons from H2CO mixtures over the group VIII metals: IV. The kinetic behavior of CO hydrogenation over Ni catalysts , 1976 .

[53]  J. Ryczkowski,et al.  Influence of the crystallite size of platinum of the course of hydrogenolysis of ethane and propane over Pt/Al2O3 catalysts , 1989 .

[54]  L. Schmidt,et al.  Effect of oxidation-reduction cycling on C2H6 hydrogenolysis: Comparison of Ru, Rh, Ir, Ni, Pt, and Pd on SiO2 , 1989 .

[55]  M. Boudart,et al.  Rate of oxidation of CO on Pd at pressure between 10−1 and 102 mbar , 1993 .

[56]  D. Goodman,et al.  Ethane hydrogenolysis over single crystals of nickel: Direct detection of structure sensitivity , 1982 .

[57]  K. Tamaru Dynamic Heterogeneous Catalysis , 1977 .

[58]  J. Schlatter,et al.  Hydrogenation of ethylene on supported platinum , 1972 .

[59]  C. Bennett,et al.  The CO/H2 reaction over nickel-alumina studied by the transient method , 1984 .

[60]  Charles N. Satterfield,et al.  Heterogeneous catalysis in industrial practice , 1991 .

[61]  J. Dumesic,et al.  Kinetic study of ethylene hydrogenation , 1991 .

[62]  J. L. Butler,et al.  Support and crystallite size effects in CO hydrogenation on nickel , 1980 .

[63]  C. H. Bartholomew Chapter 5 Recent Developments in Fischer-Tropsch Catalysis , 1991 .

[64]  C. H. Bartholomew Carbon Deposition in Steam Reforming and Methanation , 1982 .

[65]  M. Boudart,et al.  Catalytic hydrogenation of cyclohexene: I. Vapor-phase reaction on supported platinum , 1978 .

[66]  Anthony B. Pinkerton,et al.  Bull. Soc. Chim. Fr. , 1957 .

[67]  C. H. Bartholomew Mechanisms of Nickel Catalyst Poisoning , 1988 .

[68]  W. Sachtler,et al.  The effects of rhenium and sulfur on the maintenance of activity and selectivity of platinum/alumina hydrocarbon conversion catalysts. II: Experiments at elevated pressure , 1986 .

[69]  C. H. Bartholomew,et al.  Effects of preparation, dispersion, and extent of reduction on activity/selectivity properties of iron/alumina CO hydrogenation catalysts , 1989 .

[70]  V. Ponec,et al.  Particle Size and Carbon Deposition Effects in the Hexane Reforming Reactions , 1980 .

[71]  J. Dumesic,et al.  Surface, catalytic and magnetic properties of small iron particles: III. Nitrogen induced surface reconstruction , 1975 .

[72]  G. Somorjai,et al.  Correlation of cyclohexene reactions on platinum crystal surfaces over a ten-order-of-magnitude pressure range: Variations of structure sensitivity, rates, and reaction probabilities☆ , 1980 .

[73]  G. Somorjai,et al.  THE FABRICATION OF HIGH-TECHNOLOGY CATALYSTS , 1994 .

[74]  Alexis T. Bell,et al.  The kinetics and mechanism of carbon monoxide hydrogenation over alumina-supported ruthenium , 1981 .

[75]  G. Bond,et al.  What do we mean by “catalytic activity”? , 1994 .