QuCloud: A New Qubit Mapping Mechanism for Multi-programming Quantum Computing in Cloud Environment

For a specific quantum chip, multi-programming improves overall throughput and resource utilization. Previous studies on mapping multiple programs often lead to resource under-utilization, high error rate, and low fidelity. This paper proposes QuCloud, a new approach for mapping quantum programs in the cloud environment. We have three new designs in QuCloud. (1) We leverage the community detection technique to partition physical qubits among concurrent quantum programs, avoiding the waste of robust resources. (2) We design X-SWAP scheme that enables inter-program SWAPs and prioritizes SWAPs associated with critical gates to reduce the SWAP overheads. (3) We propose a compilation task scheduler that schedules concurrent quantum programs to be compiled and executed based on estimated fidelity for the best practice. We evaluate our work on publicly available quantum computer IBMQ16 and a simulated quantum chip IBMQ50. Our work outperforms the state-of-the-art work for multi-programming on fidelity and compilation overheads by 9.7% and 11.6%, respectively.

[1]  Abdullah Ash-Saki,et al.  QURE: Qubit Re-allocation in Noisy Intermediate-Scale Quantum Computers , 2019, 2019 56th ACM/IEEE Design Automation Conference (DAC).

[2]  M E J Newman,et al.  Fast algorithm for detecting community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Moinuddin K. Qureshi,et al.  A Case for Multi-Programming Quantum Computers , 2019, MICRO.

[4]  Guangwen Yang,et al.  Quantum computational advantage using photons , 2020, Science.

[5]  Moinuddin K. Qureshi,et al.  Not All Qubits Are Created Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers , 2018, ASPLOS.

[6]  Robert Wille,et al.  Efficient mapping of quantum circuits to the IBM QX architectures , 2017, 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[7]  Margaret Martonosi,et al.  Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers , 2019, ASPLOS.

[8]  Chad Rigetti,et al.  Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies , 2010 .

[9]  Gushu Li,et al.  Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices , 2018, ASPLOS.

[10]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[11]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[12]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[13]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[14]  S. Lloyd,et al.  Quantum algorithms for supervised and unsupervised machine learning , 2013, 1307.0411.

[15]  N. Mermin Quantum Computer Science: An Introduction , 2007 .

[16]  Hideharu Amano,et al.  Extracting Success from IBM’s 20-Qubit Machines Using Error-Aware Compilation , 2019, ACM J. Emerg. Technol. Comput. Syst..

[17]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[18]  Margaret Martonosi,et al.  Software Mitigation of Crosstalk on Noisy Intermediate-Scale Quantum Computers , 2019, ASPLOS.

[19]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[20]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[21]  Moinuddin K. Qureshi,et al.  Mitigating Measurement Errors in Quantum Computers by Exploiting State-Dependent Bias , 2019, MICRO.

[22]  Andrew W. Cross,et al.  Open Quantum Assembly Language , 2017, 1707.03429.

[23]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[24]  Michel Devoret,et al.  Superconducting quantum bits , 2005 .

[25]  С.И. Доронин,et al.  РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ НА КВАНТОВОМ ПРОЦЕССОРЕ IBM QUANTUM EXPERIENCE , 2020 .

[26]  Robert Wille,et al.  RevLib: An Online Resource for Reversible Functions and Reversible Circuits , 2008, 38th International Symposium on Multiple Valued Logic (ismvl 2008).

[27]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[28]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.