Fast ion motion in glassy and amorphous materials

Abstract Seeking a broad perspective we define a decoupling index R τ , 1 τ 13 , which describes how well the (fast ion) conducting modes are decoupled from the amorphous matrix. For glassy electrolytes the R τ must be high, > 10 8 . For successful (polymer + salt) “solid” electrolytes, R τ can be low, ∼1, provided T g is low. We review recent findings for Group 1A and 1B cation glasses and contrast them with results for new LiI-rich organic cation glasses. The theoretical maximum conductivity for glassy systems, considering the quench rate factor, is analyzed, and the far IR conductivity is correlated with σ(ω) measurements. Then we consider the low R τ polymer + salt constrained-liquid “solid” electrolytes, and analyze the X- and T- dependences of σ o for such cases. Finally we correlate mechanical and electrical relaxation phenomena, and review insights from computer simulation studies for oxides and sulfides. These support a gated channel mechanism for migration.

[1]  M. Ribes,et al.  Structure et conductivite electrique de verres appartenant au systeme Li2Si2O5 Li2SO4 , 1979 .

[2]  W. Capps,et al.  Viscosity and Electrical Resistivity of Molten Alkali Borates , 1953 .

[3]  T. Minami,et al.  Ionic conductivity of superionic conducting glasses in the pseudobinary system AgIAg2MoO4 , 1980 .

[4]  P. Vashishta,et al.  Ionic motion in. cap alpha. -AgI , 1978 .

[5]  D. Day,et al.  Internal Friction of Sodium Phosphate Glasses , 1974 .

[6]  J. Wong,et al.  Glass Structure by Spectroscopy , 1976 .

[7]  D. P. Button,et al.  Fast ion transport in oxide glasses , 1980 .

[8]  T. Minami,et al.  Formation region and characterization of superionic conducting glasses in the systems AgIAg2OMxOy , 1980 .

[9]  K. Nassau,et al.  Quenched Li-containing multiple sulfate glasses , 1981 .

[10]  P. Hagenmuller,et al.  Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses , 1983 .

[11]  C. T. Moynihan,et al.  Comparison of Shear and Conductivity Relaxation Times for Concentrated Lithium Chloride Solutions , 1971 .

[12]  C. T. Moynihan,et al.  Weak‐Electrolyte Models for the Mixed‐Alkali Effect in Glass , 1981 .

[13]  Donald R Uhlmann,et al.  Viscous flow in simple organic liquids , 1972 .

[14]  David Turnbull,et al.  Molecular Transport in Liquids and Glasses , 1959 .

[15]  G. Adam,et al.  On the Temperature Dependence of Cooperative Relaxation Properties in Glass‐Forming Liquids , 1965 .

[16]  T. Minami,et al.  Formation of Glasses with High Ionic Conductivity in the System AgI‐Ag2O‐MoO3 , 1977 .

[17]  P. Hagenmuller,et al.  Etude comparee de la conductivite ionique du lithium dans les halogenoborates vitreux , 1979 .

[18]  J. F. Cordaro,et al.  Low frequency dielectric relaxation from complex impedance and complex electric ‘modulus’ , 1979 .

[19]  Y. Kawamoto,et al.  Ionic conduction in As2S3Ag2S, GeS2GeSAg2S and P2S5Ag2S glasses , 1976 .

[20]  C. Vincent,et al.  Temperature dependence of ionic conductivity in glass: Non-arrhenius behavior in the Ag7I4AsO4 system , 1982 .

[21]  A. Schiraldi,et al.  Formation of high conductivity glasses in the system AgIAg2OB2O3 , 1979 .

[22]  R. J. Charles Metastable Liquid Immiscibility in Alkali Metal Oxide–Silica Systems , 1966 .

[23]  C. Rao,et al.  Preparation and characterization of materials , 1981 .

[24]  C. Angell,et al.  Electrical relaxation in amorphous protonic conductors , 1977 .

[25]  D. Macfarlane,et al.  Homogeneous nucleation and glass transition temperatures in solutions of Li salts in D2O and H2O. Doubly unstable glass regions , 1981 .

[26]  C. Angell,et al.  Fluidity and conductance in aqueous electrolyte solutions. Approach from the glassy state and high-concentration limit. I. Calcium nitrate solutions , 1972 .

[27]  J. C. Tucker,et al.  Heat capacity changes in glass-forming aqueous solutions and the glass transition in vitreous water , 1980 .

[28]  A. Magistris,et al.  Short range order and glass transition in AgIAg2OB2O3 vitreous electrolytes , 1982 .

[29]  M. Goldstein Viscous liquids and the glass transition. IV. Thermodynamic equations and the transition , 1973 .

[30]  A. Boyer,et al.  Internal friction in phosphoaluminate and borate glasses , 1974 .

[31]  J. Malugani,et al.  Conductivite ionique dans les verres LiPO3LiX (X = I, Br, Cl) , 1978 .

[32]  K. Nassau,et al.  Ionic conductivity of quenched alkali niobate and tantalate glasses , 1978 .

[33]  W. Risen,et al.  Interionic vibrations and glass transitions in ionic oxide metaphosphate glasses , 1974 .

[34]  C. Angell,et al.  Test of the entropy basis of the Vogel-Tammann-Fulcher equation. Dielectric relaxation of polyalcohols near Tg , 1982 .

[35]  B. Wunderlich STUDY OF THE CHANGE IN SPECIFIC HEAT OF MONOMERIC AND POLYMERIC GLASSES DURING THE GLASS TRANSITION , 1960 .

[36]  F. Bueche Rate and Pressure Effects in Polymers and Other Glass-Forming Substances , 1962 .