Proper generalized decomposition of multiscale models
暂无分享,去创建一个
Elías Cueto | Francisco Chinesta | Amine Ammar | F. Chinesta | E. Cueto | A. Ammar | A. Ammar | Francisco Chinesta | Elias Cueto
[1] B. Mokdad,et al. On the Simulation of Kinetic Theory Models of Complex Fluids Using the Fokker-Planck Approach , 2007 .
[2] Francisco Chinesta,et al. The Nanometric and Micrometric Scales of the Structure and Mechanics of Materials Revisited: An Introduction to the Challenges of Fully Deterministic Numerical Descriptions , 2008 .
[3] Themistocles M. Rassias,et al. Finite Sums Decompositions In Mathematical Analysis , 1995 .
[4] H. Park,et al. The use of the Karhunen-Loève decomposition for the modeling of distributed parameter systems , 1996 .
[5] Francisco Chinesta,et al. A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids - Part II: Transient simulation using space-time separated representations , 2007 .
[6] O. Pironneau,et al. Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .
[7] D. Ryckelynck,et al. A priori hyperreduction method: an adaptive approach , 2005 .
[8] Francisco Chinesta,et al. Alleviating mesh constraints : Model reduction, parallel time integration and high resolution homogenization , 2008 .
[9] Francisco Chinesta,et al. A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .
[10] Åke Björck,et al. The calculation of linear least squares problems , 2004, Acta Numerica.
[11] Martin J. Mohlenkamp,et al. Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..
[12] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[13] E. Cancès,et al. Computational quantum chemistry: A primer , 2003 .
[14] Manuel Laso,et al. On the reduction of stochastic kinetic theory models of complex fluids , 2007 .
[15] Francisco Chinesta,et al. An efficient reduced simulation of residual stresses in composite forming processes , 2010 .
[16] Francisco Chinesta,et al. On the Reduction of Kinetic Theory Models Related to Finitely Extensible Dumbbells , 2006 .
[17] F. Chinesta,et al. An efficient ‘a priori’ model reduction for boundary element models , 2005 .
[18] Pierre Ladevèze,et al. Multiscale Computational Strategy With Time and Space Homogenization: A Radial-Type Approximation Technique for Solving Microproblems , 2004 .
[19] Yvon Maday,et al. The Reduced Basis Element Method: Application to a Thermal Fin Problem , 2004, SIAM J. Sci. Comput..
[20] Elías Cueto,et al. Non incremental strategies based on separated representations: applications in computational rheology , 2010 .
[21] Pierre Ladevèze,et al. Nonlinear Computational Structural Mechanics , 1999 .
[22] David Dureisseix,et al. A computational strategy for thermo‐poroelastic structures with a time–space interface coupling , 2008 .
[23] P. Ladevèze,et al. The LATIN multiscale computational method and the Proper Generalized Decomposition , 2010 .