MECR Mutations Cause Childhood-Onset Dystonia and Optic Atrophy, a Mitochondrial Fatty Acid Synthesis Disorder.

[1]  J. Cronan Assembly of Lipoic Acid on Its Cognate Enzymes: an Extraordinary and Essential Biosynthetic Pathway , 2016, Microbiology and Molecular Reviews.

[2]  Larry N. Singh,et al.  Altering the Mitochondrial Fatty Acid Synthesis (mtFASII) Pathway Modulates Cellular Metabolic States and Bioactive Lipid Profiles as Revealed by Metabolomic Profiling , 2016, PloS one.

[3]  S. Lessell,et al.  Leber Hereditary Optic Neuropathy: Bringing the Lab to the Clinic , 2016, Seminars in ophthalmology.

[4]  E. Boerwinkle,et al.  dbNSFP v3.0: A One‐Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice‐Site SNVs , 2016, Human mutation.

[5]  S. Rahman,et al.  Leigh syndrome: One disorder, more than 75 monogenic causes , 2016 .

[6]  J. Cáceres,et al.  Mechanism and regulation of the nonsense-mediated decay pathway , 2016, Nucleic acids research.

[7]  D. Valle,et al.  GeneMatcher: A Matching Tool for Connecting Investigators with an Interest in the Same Gene , 2015, Human mutation.

[8]  M. Kurian,et al.  Neurodegeneration with Brain Iron Accumulation: Genetic Diversity and Pathophysiological Mechanisms. , 2015, Annual review of genomics and human genetics.

[9]  R. Nardone,et al.  Bilateral symmetrical basal ganglia and thalamic lesions in children: an update (2015) , 2015, Neuroradiology.

[10]  Peter Lackner,et al.  MAESTRO - multi agent stability prediction upon point mutations , 2015, BMC Bioinformatics.

[11]  Marni J. Falk,et al.  Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society , 2014, Genetics in Medicine.

[12]  Eunju Kim,et al.  A Novel Cytosolic Isoform of Mitochondrial Trans-2-Enoyl-CoA Reductase Enhances Peroxisome Proliferator-Activated Receptor α Activity , 2014, Endocrinology and metabolism.

[13]  Douglas E. V. Pires,et al.  DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach , 2014, Nucleic Acids Res..

[14]  Zhihui Feng,et al.  4-Methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic Acid (C75), an Inhibitor of Fatty-acid Synthase, Suppresses the Mitochondrial Fatty Acid Synthesis Pathway and Impairs Mitochondrial Function* , 2014, The Journal of Biological Chemistry.

[15]  F. Tort,et al.  Lipoic acid biosynthesis defects , 2014, Journal of Inherited Metabolic Disease.

[16]  F. Tort,et al.  Mutations in the lipoyltransferase LIPT1 gene cause a fatal disease associated with a specific lipoylation defect of the 2-ketoacid dehydrogenase complexes. , 2014, Human molecular genetics.

[17]  Jana Marie Schwarz,et al.  MutationTaster2: mutation prediction for the deep-sequencing age , 2014, Nature Methods.

[18]  Douglas E. V. Pires,et al.  mCSM: predicting the effects of mutations in proteins using graph-based signatures , 2013, Bioinform..

[19]  D. Murdock,et al.  The mitochondrial fatty acid synthesis (mtFASII) pathway is capable of mediating nuclear-mitochondrial cross talk through the PPAR system of transcriptional activation. , 2013, Biochemical and biophysical research communications.

[20]  A. Kastaniotis,et al.  Defects in mitochondrial fatty acid synthesis result in failure of multiple aspects of mitochondrial biogenesis in Saccharomyces cerevisiae , 2013, Molecular microbiology.

[21]  J. Cronan,et al.  The role of the Saccharomyces cerevisiae lipoate protein ligase homologue, Lip3, in lipoic acid synthesis , 2013, Yeast.

[22]  Aaron R. Quinlan,et al.  GEMINI: Integrative Exploration of Genetic Variation and Genome Annotations , 2013, PLoS Comput. Biol..

[23]  Y. Yoshinaga,et al.  Compromised Mitochondrial Fatty Acid Synthesis in Transgenic Mice Results in Defective Protein Lipoylation and Energy Disequilibrium , 2012, PloS one.

[24]  J. Miller,et al.  Predicting the Functional Effect of Amino Acid Substitutions and Indels , 2012, PloS one.

[25]  C. Fauth,et al.  Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism, and glycine elevation. , 2011, American Journal of Human Genetics.

[26]  C. Sander,et al.  Predicting the functional impact of protein mutations: application to cancer genomics , 2011, Nucleic acids research.

[27]  Catherine L. Worth,et al.  SDM—a server for predicting effects of mutations on protein stability and malfunction , 2011, Nucleic Acids Res..

[28]  M. Durán,et al.  Diagnosis and management of glutaric aciduria type I – revised recommendations , 2011, Journal of Inherited Metabolic Disease.

[29]  R. Giegé,et al.  Mutation of the mitochondrial tyrosyl-tRNA synthetase gene, YARS2, causes myopathy, lactic acidosis, and sideroblastic anemia--MLASA syndrome. , 2010, American journal of human genetics.

[30]  S. Schneider,et al.  Secondary dystonia – clinical clues and syndromic associations , 2010, European journal of neurology.

[31]  K. Autio,et al.  Mitochondrial fatty acid synthesis and respiration. , 2010, Biochimica et biophysica acta.

[32]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[33]  A. Kastaniotis,et al.  17β‐Hydroxysteroid dehydrogenase type 8 and carbonyl reductase type 4 assemble as a ketoacyl reductase of human mitochondrial FAS , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[34]  I. Miinalainen,et al.  Myocardial Overexpression of Mecr, a Gene of Mitochondrial FAS II Leads to Cardiac Dysfunction in Mouse , 2009, PloS one.

[35]  A. Witkowski,et al.  Down-regulation of Mitochondrial Acyl Carrier Protein in Mammalian Cells Compromises Protein Lipoylation and Respiratory Complex I and Results in Cell Death* , 2009, Journal of Biological Chemistry.

[36]  K. Autio,et al.  Mitochondrial Fatty Acid Synthesis Type II: More than Just Fatty Acids* , 2009, Journal of Biological Chemistry.

[37]  J. Hiltunen,et al.  Structural enzymological studies of 2-enoyl thioester reductase of the human mitochondrial FAS II pathway: new insights into its substrate recognition properties. , 2008, Journal of molecular biology.

[38]  M. Michael Gromiha,et al.  CUPSAT: prediction of protein stability upon point mutations , 2006, Nucleic Acids Res..

[39]  Antonio Marín,et al.  Characterization and prediction of alternative splice sites. , 2006, Gene.

[40]  N. Maeda,et al.  Endogenous Production of Lipoic Acid Is Essential for Mouse Development , 2005, Molecular and Cellular Biology.

[41]  Piero Fariselli,et al.  I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure , 2005, Nucleic Acids Res..

[42]  Harald W. Platta,et al.  Ubiquitination of the peroxisomal import receptor Pex5p. , 2004, The Biochemical journal.

[43]  K. Autio,et al.  Htd2p/Yhr067p is a yeast 3‐hydroxyacyl‐ACP dehydratase essential for mitochondrial function and morphology , 2004, Molecular microbiology.

[44]  A. Bonen,et al.  A Novel Function for Fatty Acid Translocase (FAT)/CD36 , 2004, Journal of Biological Chemistry.

[45]  Howard T. Jacobs,et al.  Premature ageing in mice expressing defective mitochondrial DNA polymerase , 2004, Nature.

[46]  Eran Eyal,et al.  Importance of solvent accessibility and contact surfaces in modeling side‐chain conformations in proteins , 2004, J. Comput. Chem..

[47]  I. Miinalainen,et al.  Characterization of 2-Enoyl Thioester Reductase from Mammals , 2003, Journal of Biological Chemistry.

[48]  M. Vihinen,et al.  Structural basis of ICF-causing mutations in the methyltransferase domain of DNMT3B. , 2002, Protein engineering.

[49]  L. Serrano,et al.  Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. , 2002, Journal of molecular biology.

[50]  H. Berman,et al.  Electronic Reprint Biological Crystallography the Protein Data Bank Biological Crystallography the Protein Data Bank , 2022 .

[51]  A. Kastaniotis,et al.  Candida tropicalis Etr1p andSaccharomyces cerevisiae Ybr026p (Mrf1′p), 2-Enoyl Thioester Reductases Essential for Mitochondrial Respiratory Competence , 2001, Molecular and Cellular Biology.

[52]  S. Henikoff,et al.  Predicting deleterious amino acid substitutions. , 2001, Genome research.

[53]  S. Brody,et al.  Mitochondrial acyl carrier protein is involved in lipoic acid synthesis in Saccharomyces cerevisiae , 1997, FEBS letters.

[54]  J. Ohlrogge,et al.  Why do mitochondria synthesize fatty acids? Evidence for involvement in lipoic acid production. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[55]  H. Wolfson,et al.  Efficient detection of three-dimensional structural motifs in biological macromolecules by computer vision techniques. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[56]  R. D. Gietz,et al.  New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. , 1988, Gene.

[57]  A. Myers,et al.  Yeast/E. coli shuttle vectors with multiple unique restriction sites , 1986, Yeast.

[58]  R. Bressler,et al.  Prevention of the metabolic effects of 2-tetradecylglycidate by octanoic acid in the genetically diabetic mouse (db/db). , 1985, Biochemical medicine.

[59]  Edward Klorman,et al.  Web Resources , 2019, Istanbul.

[60]  P. Calabresi,et al.  Downstream mechanisms triggered by mitochondrial dysfunction in the basal ganglia: from experimental models to neurodegenerative diseases. , 2010, Biochimica et biophysica acta.