An Adaptation of the NICE Cryptosystem to Real Quadratic Orders
暂无分享,去创建一个
[1] H. C. Williams,et al. A $p+1$ method of factoring , 1982 .
[2] Arjen K. Lenstra,et al. Unbelievable Security. Matching AES Security Using Public Key Systems , 2001, ASIACRYPT.
[3] P. Levy,et al. Sur le développement en fraction continue d'un nombre choisi au hasard , 1936 .
[4] Michael J. Jacobson,et al. Efficient Ideal Reduction in Quadratic Fields , 2006 .
[5] Kwangjo Kim,et al. Information Security and Cryptology — ICISC 2001 , 2002, Lecture Notes in Computer Science.
[6] J. Littlewood,et al. Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes , 1923 .
[7] Loo Keng Hua,et al. Introduction to number theory , 1982 .
[8] Andrzej Schinzel,et al. On some problems of the arithmetical theory of continued fractions , 1961 .
[9] Antoine Joux,et al. A NICE Cryptanalysis , 2000, EUROCRYPT.
[10] Tikao Tatuzawa,et al. On a Theorem of Siegel , 1951 .
[11] Colin Boyd,et al. Advances in Cryptology - ASIACRYPT 2001 , 2001 .
[12] J. Ward,et al. Book Review: Proceedings of the Third International Conference on Spectral and High Order Methods@@@Book Review: An introduction to computational geometry for curves and surfaces@@@Book Review: The mathematics of surfaces@@@Book Review: Algorithmic number theory, Volume I: Efficient algorithms , 1998 .
[13] Michael J. Jacobson,et al. An Improved Real-Quadratic-Field-Based Key Exchange Procedure , 2005, Journal of Cryptology.
[14] Tsuyoshi Takagi,et al. A Cryptosystem Based on Non-maximal Imaginary Quadratic Orders with Fast Decryption , 1998, EUROCRYPT.
[15] Richard Mollin,et al. On real quadratic fields of class number two , 1992 .
[16] Pierre Dusart,et al. The kth prime is greater than k(ln k + ln ln k - 1) for k >= 2 , 1999, Math. Comput..
[17] Robert D. Silverman,et al. Are 'Strong' Primes Needed for RSA , 2001, IACR Cryptol. ePrint Arch..
[18] H. W. Lenstra,et al. Factoring integers with elliptic curves , 1987 .
[19] H. C. Williams,et al. Short Representation of Quadratic Integers , 1995 .
[20] GÜnteR Von Degert. Über die Bestimmung der Grundeinheit gewisser reell-quadratischer Zahlkörper , 1958 .
[21] Alfred J. van der Poorten,et al. Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100 000 000 000 , 1999 .
[22] Michael J. Jacobson,et al. An Investigation of Bounds for the Regulator of Quadratic Fields , 1995, Exp. Math..
[23] Tsuyoshi Takagi,et al. New public-key cryptosystems with fast decryption , 2001 .
[24] Arjen K. Lenstra,et al. The number field sieve , 1990, STOC '90.
[25] Kell Hiu Fai Cheng,et al. Some results concerning periodic continued fractions , 2003 .
[26] T. Hagedorn,et al. PRIMES OF THE FORM x 2 + ny 2 AND THE GEOMETRY OF ( CONVENIENT ) NUMBERS , 2010 .
[27] Johannes A. Buchmann,et al. A key-exchange system based on imaginary quadratic fields , 1988, Journal of Cryptology.
[28] H. C. Williams. On Numbers Analogous to the Carmichael Numbers , 1977, Canadian Mathematical Bulletin.
[29] Detlef Hühnlein,et al. Towards Practical Non-interactive Public Key Cryptosystems Using Non-maximal Imaginary Quadratic Orders , 2000, Selected Areas in Cryptography.
[30] H. C. Williams,et al. New Computations Concerning the Cohen-Lenstra Heuristics , 2003, Exp. Math..
[31] Tsuyoshi Takagi,et al. An IND-CCA2 Public-Key Cryptosystem with Fast Decryption , 2001, ICISC.
[32] Kaisa Nyberg,et al. Advances in Cryptology — EUROCRYPT'98 , 1998 .
[33] H. C. Williams,et al. Some results concerning certain periodic continued fractions , 2005 .
[34] Andreas Stein,et al. Cryptographic protocols on real hyperelliptic curves , 2007, Adv. Math. Commun..
[35] Johannes A. Buchmann,et al. A Key Exchange System Based on Real Quadratic Fields , 1989, CRYPTO.
[36] Tsuyoshi Takagi,et al. A New Public-Key Cryptosystem over a Quadratic Order with Quadratic Decryption Time , 2000, Journal of Cryptology.
[37] D. Boneh,et al. Factoring N = pr q for large r , 1999 .
[38] Jeff Gilchrist,et al. Factorization of a 512-Bit RSA Modulus , 2000, EUROCRYPT.
[39] Johannes Buchmann,et al. Implementation of a key exchange protocol using real quadratic fields (extended abstract) , 1991 .
[40] Jeffrey Shallit,et al. Algorithmic Number Theory , 1996, Lecture Notes in Computer Science.
[41] Michael J. Jacobson,et al. Computational techniques in quadratic fields , 1995 .
[42] Henri Cohen,et al. Heuristics on class groups , 1984 .
[43] E. Okamoto,et al. Faster factoring of integers of a special form , 1996 .
[44] S. Lang. Algebraic Number Theory , 1971 .
[45] Tsuyoshi Takagi,et al. Fast RSA-Type Cryptosystem Modulo pkq , 1998, CRYPTO.
[46] H. C. Williams,et al. Édouard Lucas and primality testing , 1999 .
[47] Hugo Krawczyk,et al. Advances in Cryptology - CRYPTO '98 , 1998 .
[48] Marvin C. Wunderlich,et al. On the parallel generation of the residues for the continued fraction factoring algorithm , 1987 .
[49] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[50] H. C. Williams,et al. Quadratic polynomials which have a high density of prime values , 1990 .
[51] Bart Preneel,et al. Advances in cryptology - EUROCRYPT 2000 : International Conference on the Theory and Application of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000 : proceedings , 2000 .