Pollution problem of the p‐ and h–p versions of the finite element method
暂无分享,去创建一个
[1] Barna A. Szabó. Implementation of a finite element software system with h and p extension capabilities , 1986 .
[2] B. Szabó. Mesh design for the p-version of the finite element method , 1986 .
[3] Ernst Rank,et al. An expert-system-like feedback approach in the hp -version of the finite element method , 1987 .
[4] I. Babuska,et al. Theh,p andh-p versions of the finite element method in 1 dimension , 1986 .
[5] Milo R. Dorr,et al. The Approximation Theory for the p-Version of the Finite Element Method , 1984 .
[6] M. Dorr. The approximation of solutions of elliptic boundary-value problems via the p -version of the finite element method , 1986 .
[7] I. Babuska,et al. Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .
[8] Barna A. Szabó. Computation of sress field parameters in areas of steep stress gradients , 1986 .
[9] Ivo Babuška,et al. The h-p version of the finite element method , 1986 .
[10] Ernst Rank,et al. An expert system for the optimal mesh design in the hp‐version of the finite element method , 1987 .
[11] Ivo Babuška,et al. The p-Version of the Finite Element Method for Parabolic Equations. Part 1 , 1981 .
[12] Ivo Babuška,et al. Error estimates for the combinedh andp versions of the finite element method , 1981 .
[13] A. H. Schatz,et al. Interior estimates for Ritz-Galerkin methods , 1974 .
[14] Ivo Babuška,et al. On the Rates of Convergence of the Finite Element Method , 1982 .
[15] Ivo Babuška,et al. Regularity of the solution of elliptic problems with piecewise analytic data. Part 1. Boundary value problems for linear elliptic equation of second order , 1988 .