Pollution problem of the p‐ and h–p versions of the finite element method

The pollution problem of the p-version of the finite element method is studied. It is shown that the pollution effect can be practically dealt with by a proper mesh design.

[1]  Barna A. Szabó Implementation of a finite element software system with h and p extension capabilities , 1986 .

[2]  B. Szabó Mesh design for the p-version of the finite element method , 1986 .

[3]  Ernst Rank,et al.  An expert-system-like feedback approach in the hp -version of the finite element method , 1987 .

[4]  I. Babuska,et al.  Theh,p andh-p versions of the finite element method in 1 dimension , 1986 .

[5]  Milo R. Dorr,et al.  The Approximation Theory for the p-Version of the Finite Element Method , 1984 .

[6]  M. Dorr The approximation of solutions of elliptic boundary-value problems via the p -version of the finite element method , 1986 .

[7]  I. Babuska,et al.  Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .

[8]  Barna A. Szabó Computation of sress field parameters in areas of steep stress gradients , 1986 .

[9]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[10]  Ernst Rank,et al.  An expert system for the optimal mesh design in the hp‐version of the finite element method , 1987 .

[11]  Ivo Babuška,et al.  The p-Version of the Finite Element Method for Parabolic Equations. Part 1 , 1981 .

[12]  Ivo Babuška,et al.  Error estimates for the combinedh andp versions of the finite element method , 1981 .

[13]  A. H. Schatz,et al.  Interior estimates for Ritz-Galerkin methods , 1974 .

[14]  Ivo Babuška,et al.  On the Rates of Convergence of the Finite Element Method , 1982 .

[15]  Ivo Babuška,et al.  Regularity of the solution of elliptic problems with piecewise analytic data. Part 1. Boundary value problems for linear elliptic equation of second order , 1988 .