Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization

[1]  B. Sjöberg,et al.  Oligomerization Status Directs Overall Activity Regulation of the Escherichia coli Class Ia Ribonucleotide Reductase*♦ , 2008, Journal of Biological Chemistry.

[2]  B. Cooperman,et al.  The structural basis for peptidomimetic inhibition of eukaryotic ribonucleotide reductase: a conformationally flexible pharmacophore. , 2008, Journal of medicinal chemistry.

[3]  J. Stubbe,et al.  Enhanced subunit interactions with gemcitabine-5′-diphosphate inhibit ribonucleotide reductases , 2007, Proceedings of the National Academy of Sciences.

[4]  C. Krebs,et al.  A Manganese(IV)/Iron(III) Cofactor in Chlamydia trachomatis Ribonucleotide Reductase , 2007, Science.

[5]  Airlie J. McCoy,et al.  Solving structures of protein complexes by molecular replacement with Phaser , 2006, Acta crystallographica. Section D, Biological crystallography.

[6]  M. Vodnala,et al.  Enzymatically Active Mammalian Ribonucleotide Reductase Exists Primarily as an α6β2 Octamer* , 2006, Journal of Biological Chemistry.

[7]  D. Nocera,et al.  Proton-coupled electron transfer: the mechanistic underpinning for radical transport and catalysis in biology , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[8]  Malin Uppsten,et al.  The first holocomplex structure of ribonucleotide reductase gives new insight into its mechanism of action. , 2006, Journal of molecular biology.

[9]  A. Hofer,et al.  Regulation of Mammalian Ribonucleotide Reduction and dNTP Pools after DNA Damage and in Resting Cells* , 2006, Journal of Biological Chemistry.

[10]  J. Fairman,et al.  Structures of eukaryotic ribonucleotide reductase I provide insights into dNTP regulation. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[11]  C. Dealwis,et al.  Structures of eukaryotic ribonucleotide reductase I define gemcitabine diphosphate binding and subunit assembly. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[12]  N. Kelleher,et al.  Nuclear localization of the Saccharomyces cerevisiae ribonucleotide reductase small subunit requires a karyopherin and a WD40 repeat protein , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[13]  F. Studier,et al.  Protein production by auto-induction in high density shaking cultures. , 2005, Protein expression and purification.

[14]  P. Nordlund,et al.  Structural mechanism of allosteric substrate specificity regulation in a ribonucleotide reductase , 2004, Nature Structural &Molecular Biology.

[15]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[16]  Yifan Cheng,et al.  Negative Staining and Image Classification – Powerful Tools in Modern Electron Microscopy , 2004, Biological Procedures Online.

[17]  J. Stubbe,et al.  Pre-steady-state and steady-state kinetic analysis of E. coli class I ribonucleotide reductase. , 2003, Biochemistry.

[18]  U. Uhlin,et al.  Structure of the large subunit of class Ib ribonucleotide reductase from Salmonella typhimurium and its complexes with allosteric effectors. , 2003, Journal of molecular biology.

[19]  Oliviero Carugo,et al.  Atom depth as a descriptor of the protein interior. , 2003, Biophysical journal.

[20]  R. Rothstein,et al.  Survival of DNA Damage in Yeast Directly Depends on Increased dNTP Levels Allowed by Relaxed Feedback Inhibition of Ribonucleotide Reductase , 2003, Cell.

[21]  B. Cooperman,et al.  Comprehensive model for allosteric regulation of mammalian ribonucleotide reductase: refinements and consequences. , 2003, Biochemistry.

[22]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[23]  M. Sintchak,et al.  The crystal structure of class II ribonucleotide reductase reveals how an allosterically regulated monomer mimics a dimer , 2002, Nature Structural Biology.

[24]  B. Cooperman,et al.  A comprehensive model for the allosteric regulation of mammalian ribonucleotide reductase. Functional consequences of ATP- and dATP-induced oligomerization of the large subunit. , 2002, Biochemistry.

[25]  A. Rosenzweig,et al.  Structure of the yeast ribonucleotide reductase Y2Y4 heterodimer , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  B. Sjöberg,et al.  Structural basis for allosteric substrate specificity regulation in anaerobic ribonucleotide reductases. , 2001, Structure.

[27]  P. Reichard,et al.  Cross-talk between the Allosteric Effector-binding Sites in Mouse Ribonucleotide Reductase* , 2000, The Journal of Biological Chemistry.

[28]  W Minor,et al.  Strategies for macromolecular synchrotron crystallography. , 2000, Structure.

[29]  W Chiu,et al.  EMAN: semiautomated software for high-resolution single-particle reconstructions. , 1999, Journal of structural biology.

[30]  B. Sjöberg,et al.  A glycyl radical site in the crystal structure of a class III ribonucleotide reductase. , 1999, Science.

[31]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[32]  R Rothstein,et al.  A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. , 1998, Molecular cell.

[33]  M. Eriksson,et al.  Binding of allosteric effectors to ribonucleotide reductase protein R1: reduction of active-site cysteines promotes substrate binding. , 1997, Structure.

[34]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[35]  P. Wyatt Multiangle Light Scattering: The Basic Tool for Macromolecular Characterization , 1997 .

[36]  J. Stubbe,et al.  Ribonucleotide reductases: radical enzymes with suicidal tendencies. , 1995, Biochemical Society transactions.

[37]  P. Reichard,et al.  Allosteric control of the substrate specificity of the anaerobic ribonucleotide reductase from Escherichia coli. , 1994, The Journal of biological chemistry.

[38]  U. Uhlin,et al.  Structure of ribonucleotide reductase protein R1 , 1994, Nature.

[39]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[40]  J. Harder,et al.  Ribonucleotide reductases and their occurrence in microorganisms: a link to the RNA/DNA transition. , 1993, FEMS microbiology reviews.

[41]  P. Reichard,et al.  From RNA to DNA, why so many ribonucleotide reductases? , 1993, Science.

[42]  K. P. Murphy,et al.  Structural energetics of peptide recognition: Angiotensin II/antibody binding , 1993, Proteins.

[43]  S. Elledge,et al.  Ribonucleotide reductase: regulation, regulation, regulation. , 1992, Trends in biochemical sciences.

[44]  J. Bollinger,et al.  Mechanism of assembly of the tyrosyl radical-dinuclear iron cluster cofactor of ribonucleotide reductase. , 1991, Science.

[45]  B. Cooperman,et al.  The carboxyl terminus heptapeptide of the R2 subunit of mammalian ribonucleotide reductase inhibits enzyme activity and can be used to purify the R1 subunit , 1990, FEBS letters.

[46]  B. Sjöberg,et al.  An ultrafiltration assay for nucleotide binding to ribonucleotide reductase. , 1990, Analytical biochemistry.

[47]  J. Frank,et al.  Three‐dimensional reconstruction from a single‐exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli , 1987, Journal of microscopy.

[48]  C. Mathews,et al.  DNA precursor pools and ribonucleotide reductase activity: distribution between the nucleus and cytoplasm of mammalian cells , 1985, Molecular and cellular biology.

[49]  Y. Engström,et al.  Cell cycle-dependent expression of mammalian ribonucleotide reductase. Differential regulation of the two subunits. , 1985, The Journal of biological chemistry.

[50]  L. Thelander,et al.  Ribonucleotide reductase from calf thymus. Separation of the enzyme into two nonidentical subunits, proteins M1 and M2. , 1980, The Journal of biological chemistry.

[51]  L. Thelander Physicochemical characterization of ribonucleoside diphosphate reductase from Escherichia coli. , 1973, The Journal of biological chemistry.

[52]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[53]  P. Reichard,et al.  Role of effector binding in allosteric control of ribonucleoside diphosphate reductase. , 1969, Journal of molecular biology.

[54]  P. Reichard,et al.  Ribonucleoside diphosphate reductase. Formation of active and inactive complexes of proteins B1 and B2. , 1969, Journal of molecular biology.

[55]  P. Reichard,et al.  Ribonucleoside diphosphate reductase. Purification of the two subunits, proteins B1 and B2. , 1969, European journal of biochemistry.

[56]  A. Larsson,et al.  Enzymatic Synthesis of Deoxyribonucleotides , 1967 .

[57]  A. Holmgren,et al.  Enzymatic synthesis of deoxyribonucleotides, 8. The effects of ATP and dATP in the CDP reductase system from E. coli. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[58]  P. Afonine,et al.  research papers Acta Crystallographica Section D Biological , 2003 .

[59]  B. Cooperman,et al.  A comprehensive model for the allosteric regulation of Class Ia ribonucleotide reductases. , 2003, Advances in enzyme regulation.

[60]  P. Reichard,et al.  Ribonucleotide reductases. , 1998, Annual review of biochemistry.

[61]  A Leith,et al.  SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. , 1996, Journal of structural biology.

[62]  H. Eklund,et al.  The redox centers of ribonucleotide reductase of Escherichia coli. , 1992, Advances in enzymology and related areas of molecular biology.

[63]  P. Reichard,et al.  A nitrocellulose filter binding assay for ribonucleotide reductase. , 1986, Analytical biochemistry.