On positive maps in quantum information

Using the Grothendieck approach to the tensor product of locally convex spaces, we review a characterization of positive maps as well as Belavkin-Ohya characterization of PPT states. Moreover, within this scheme, a generalization of the idea of Choi matrices for genuine quantum systems will be presented.

[1]  M. Takesaki,et al.  Analyticity and the Unruh effect: a study of local modular flow , 2024, Journal of High Energy Physics.

[2]  J. Swart,et al.  The Metric Theory of Tensor Products (Grothendieck's Résumé Revisited) Part 1: Tensor Norms , 2002 .

[3]  Victor Klee,et al.  Extremal structure of convex sets. II , 1958 .

[4]  J. Lindenstrauss,et al.  Chapter 15 - Infinite Dimensional Convexity , 2001 .

[5]  H. Wielandt,et al.  Über die Unbeschränktheit der Operatoren der Quantenmechanik , 1949 .

[6]  Hans Jarchow,et al.  Locally convex spaces , 1981 .

[7]  Maxim Raginsky Radon-Nikodym derivatives of quantum operations , 2003 .

[8]  Joram Lindenstrauss,et al.  On operators which attain their norm , 1963 .

[9]  V. L. KleeJr. Extremal structure of convex sets , 1957 .

[10]  E. Størmer Mapping cones of positive maps , 2009, 0906.0472.

[11]  Alexander Semenovich Holevo,et al.  The Choi–Jamiolkowski forms of quantum Gaussian channels , 2011 .

[12]  W. Arveson On subalgebras of $C^*$-algebras , 1969 .

[13]  R. Schatten,et al.  Norm Ideals of Completely Continuous Operators , 1970 .

[14]  G. Wittstock Ordered normed tensor products , 1974 .

[15]  R. Dicke Čerenkov Radiation Counter , 1947 .

[16]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[17]  V. P. Belavkin,et al.  Entanglement, quantum entropy and mutual information , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  Joe Diestel,et al.  The metric theory of tensor products , 2008 .

[19]  A. Grothendieck,et al.  Produits Tensoriels Topologiques Et Espaces Nucleaires , 1966 .

[20]  R. Kadison,et al.  Fundamentals of the Theory of Operator Algebras , 1983 .

[21]  David E. Evans Positive linear maps on operator algebras , 1976 .

[22]  A. Wintner The Unboundedness of Quantum-Mechanical Matrices , 1947 .

[23]  Masanori Ohya,et al.  QUANTUM ENTROPY AND INFORMATION IN DISCRETE ENTANGLED STATES , 2001 .

[24]  W. Majewski,et al.  On a characterization of positive maps , 2001 .

[25]  Erling Størmer,et al.  Extension of positive maps into B (H) , 1986 .

[26]  On the structure of positive maps II: low dimensional matrix algebras , 2012, 1210.5399.

[27]  Александр Семенович Холево,et al.  Прирост энтропии и соответствие Чоя - Ямилковского для бесконечномерных квантовых эволюций@@@Entropy gain and the Choi - Jamiolkowski correspondence for infinite-dimensional quantum evolutions , 2011 .

[28]  A. Defant,et al.  Tensor Norms and Operator Ideals , 2011 .

[29]  On the structure of positive maps; finite dimensional case , 2010, 1005.3949.

[30]  Stefan Straszewicz,et al.  Über exponierte Punkte abgeschlossener Punktmengen , 1935 .

[31]  E. Størmer Positive linear maps of operator algebras , 2012 .

[32]  S. Woronowicz Positive maps of low dimensional matrix algebras , 1976 .

[33]  R. Ryan Introduction to Tensor Products of Banach Spaces , 2002 .

[34]  Separable and Entangled States of Composite Quantum Systems -- Rigorous Description , 1997, quant-ph/9711051.

[35]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[36]  M. Ohya,et al.  Characterization of partial positive transposition states and measures of entanglement , 2009 .

[37]  Wladyslaw A. Majewski,et al.  ON THE STRUCTURE OF POSITIVE MAPS BETWEEN MATRIX ALGEBRAS , 2007 .

[38]  Viacheslav P. Belavkin,et al.  A Radon-Nikodym theorem for completely positive maps , 1986 .