On positive maps in quantum information
暂无分享,去创建一个
[1] M. Takesaki,et al. Analyticity and the Unruh effect: a study of local modular flow , 2024, Journal of High Energy Physics.
[2] J. Swart,et al. The Metric Theory of Tensor Products (Grothendieck's Résumé Revisited) Part 1: Tensor Norms , 2002 .
[3] Victor Klee,et al. Extremal structure of convex sets. II , 1958 .
[4] J. Lindenstrauss,et al. Chapter 15 - Infinite Dimensional Convexity , 2001 .
[5] H. Wielandt,et al. Über die Unbeschränktheit der Operatoren der Quantenmechanik , 1949 .
[6] Hans Jarchow,et al. Locally convex spaces , 1981 .
[7] Maxim Raginsky. Radon-Nikodym derivatives of quantum operations , 2003 .
[8] Joram Lindenstrauss,et al. On operators which attain their norm , 1963 .
[9] V. L. KleeJr.. Extremal structure of convex sets , 1957 .
[10] E. Størmer. Mapping cones of positive maps , 2009, 0906.0472.
[11] Alexander Semenovich Holevo,et al. The Choi–Jamiolkowski forms of quantum Gaussian channels , 2011 .
[12] W. Arveson. On subalgebras of $C^*$-algebras , 1969 .
[13] R. Schatten,et al. Norm Ideals of Completely Continuous Operators , 1970 .
[14] G. Wittstock. Ordered normed tensor products , 1974 .
[15] R. Dicke. Čerenkov Radiation Counter , 1947 .
[16] Man-Duen Choi. Completely positive linear maps on complex matrices , 1975 .
[17] V. P. Belavkin,et al. Entanglement, quantum entropy and mutual information , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[18] Joe Diestel,et al. The metric theory of tensor products , 2008 .
[19] A. Grothendieck,et al. Produits Tensoriels Topologiques Et Espaces Nucleaires , 1966 .
[20] R. Kadison,et al. Fundamentals of the Theory of Operator Algebras , 1983 .
[21] David E. Evans. Positive linear maps on operator algebras , 1976 .
[22] A. Wintner. The Unboundedness of Quantum-Mechanical Matrices , 1947 .
[23] Masanori Ohya,et al. QUANTUM ENTROPY AND INFORMATION IN DISCRETE ENTANGLED STATES , 2001 .
[24] W. Majewski,et al. On a characterization of positive maps , 2001 .
[25] Erling Størmer,et al. Extension of positive maps into B (H) , 1986 .
[26] On the structure of positive maps II: low dimensional matrix algebras , 2012, 1210.5399.
[27] Александр Семенович Холево,et al. Прирост энтропии и соответствие Чоя - Ямилковского для бесконечномерных квантовых эволюций@@@Entropy gain and the Choi - Jamiolkowski correspondence for infinite-dimensional quantum evolutions , 2011 .
[28] A. Defant,et al. Tensor Norms and Operator Ideals , 2011 .
[29] On the structure of positive maps; finite dimensional case , 2010, 1005.3949.
[30] Stefan Straszewicz,et al. Über exponierte Punkte abgeschlossener Punktmengen , 1935 .
[31] E. Størmer. Positive linear maps of operator algebras , 2012 .
[32] S. Woronowicz. Positive maps of low dimensional matrix algebras , 1976 .
[33] R. Ryan. Introduction to Tensor Products of Banach Spaces , 2002 .
[34] Separable and Entangled States of Composite Quantum Systems -- Rigorous Description , 1997, quant-ph/9711051.
[35] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[36] M. Ohya,et al. Characterization of partial positive transposition states and measures of entanglement , 2009 .
[37] Wladyslaw A. Majewski,et al. ON THE STRUCTURE OF POSITIVE MAPS BETWEEN MATRIX ALGEBRAS , 2007 .
[38] Viacheslav P. Belavkin,et al. A Radon-Nikodym theorem for completely positive maps , 1986 .