Fast computation of R, L parameters of high frequency multi‐winding magnetic components

Purpose – The purpose of this paper is to propose a numerical procedure for the extraction of RL equivalent circuits of high frequency multi‐winding transformers with a low computational time.Design/methodology/approach – Rigorous RL equivalent circuits of multi‐winding transformers can be obtained by performing open and short‐circuit tests. In this work, the finite element method (FEM) is employed as a virtual laboratory in order to derive such circuits. However, an accurate modeling of skin and proximity effects in the windings requires extremely dense meshes at high frequencies. Therefore, a 2D frequency‐domain homogenization of the windings, which conducts to coarser meshes, is applied in order to decrease the computational burden. The fine and homogenized models are compared in terms of simulation time as well as accuracy.Findings – A significant decrease in simulation times is observed with the homogenized model (one order of magnitude at high frequencies for 2D models), while keeping acceptable rel...

[1]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[2]  P. Dular,et al.  Dual complete procedures to take stranded inductors into account in magnetic vector potential formulations , 2000 .

[3]  S. Hoole Computer-aided analysis and design of electromagnetic devices , 1989 .

[4]  Gérard Meunier,et al.  Propriétés macroscopiques équivalentes pour représenter les pertes dans les bobines conductrices , 2008 .

[5]  Jacques Lobry,et al.  An efficient approach for the numerical identification of R, L parameters of high frequency multiwinding transformers , 2010, 2010 IEEE 12th Workshop on Control and Modeling for Power Electronics (COMPEL).

[6]  Frédéric Robert,et al.  Modélisation et simulation de transformateurs pour alimentations à découpage , 1999 .

[7]  J. Uceda,et al.  Modeling High-Frequency Multiwinding Magnetic Components Using Finite-Element Analysis , 2007, IEEE Transactions on Magnetics.

[8]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[9]  J. Gyselinck,et al.  Frequency-domain homogenization of bundles of wires in 2-D magnetodynamic FE calculations , 2005, IEEE Transactions on Magnetics.

[10]  Jean-Pierre Keradec Transformateurs HF à  enroulements - Schémas à constantes localisées , 2015, Conversion de l'énergie électrique.

[11]  Gene H. Golub,et al.  Matrix computations , 1983 .

[12]  Jean-Pierre Kéradec Transformateurs HF à  enroulements - Identification expérimentale , 2015, Conversion de l'énergie électrique.

[13]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[14]  François Henrotte,et al.  A general and natural method to define circuit relations associated with magnetic vector potential formulations , 1999 .

[15]  Robert W. Erickson,et al.  A multiple-winding magnetics model having directly measurable parameters , 1998, PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196).

[16]  Christophe Geuzaine,et al.  A general environment for the treatment of discrete problems and its application to the finite element method , 1998 .