Adaptive modeling of wave propagation in heterogeneous elastic solids

This manuscript presents the results of a detailed research investigation on a fundamental problem in wave mechanics: the propagation of stress waves in heterogeneous elastic solids. The theory and methodologies of hierarchical modeling of heterogeneous materials [J. Comput. Phys. 164 (2000) 22; Int. J. Comp. Civil Str. Engrg. 1 (2000) 1; Goal-oriented Adaptive Modeling of Heterogeneous Elastic Solids, Ph.D. thesis, The University of Texas at Austin, 2000; Comput. Methods Appl. Mech. Engrg. 190 (2001) 6089] are extended to elastodynamic cases to make possible the control of the modeling error in the local average stress. One-dimensional numerical applications are given.

[1]  Noboru Kikuchi,et al.  Digital image-based modeling applied to the homogenization analysis of composite materials , 1997 .

[2]  Somnath Ghosh,et al.  Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model , 1996 .

[3]  Sia Nemat-Nasser,et al.  Universal Bounds for Overall Properties of Linear and Nonlinear Heterogeneous Solids , 1995 .

[4]  A. Bedford I – On Modeling the Dynamics of Composite Materials , 1976 .

[5]  J. Tinsley Oden,et al.  Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms , 2000 .

[6]  J. Tinsley Oden,et al.  Applied functional analysis , 1996 .

[7]  J. Tinsley Oden,et al.  Adaptive Modeling of Composite Structures: Modeling Error Estimation , 1999 .

[8]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[9]  Kumar Vemaganti,et al.  Hierarchical modeling of heterogeneous solids , 2006 .

[10]  Kenjiro Terada,et al.  Nonlinear homogenization method for practical applications , 1995 .

[11]  N. Kikuchi,et al.  NORTH-HOLLAND PREPROCESSING AND POSTPROCESSING FOR MATERIALS BASED ON THE HOMOGENIZATION METHOD WITH ADAPTIVE FINITE ELEMENT METHODS Jos , 2002 .

[12]  J. Tinsley Oden,et al.  Estimation of modeling error in computational mechanics , 2002 .

[13]  R. V. D. Geijn,et al.  A fast solution method for three‐dimensional many‐particle problems of linear elasticity , 1998 .

[14]  Bounds on elastic moduli of composites , 1995 .

[15]  John K. Tomfohr,et al.  Lecture Notes on Physics , 1879, Nature.

[16]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[17]  Somnath Ghosh,et al.  Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method , 1995 .

[18]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[19]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[20]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[21]  J. Oden,et al.  Analysis and adaptive modeling of highly heterogeneous elastic structures , 1997 .

[22]  Donald F. Adams,et al.  Analysis of Composite Materials , 2002 .

[23]  Jacob Fish,et al.  Non‐local dispersive model for wave propagation in heterogeneous media: one‐dimensional case , 2002 .

[24]  P. Onck,et al.  Computational Methods in Micromechanics , 1995 .

[25]  J. Oden,et al.  Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: Part II: a computational environment for adaptive modeling of heterogeneous elastic solids , 2001 .

[26]  Somnath Ghosh,et al.  Voronoi cell finite element model based on micropolar theory of thermoelasticity for heterogeneous materials , 1995 .

[27]  D. S. Drumheller,et al.  Introduction to elastic wave propagation , 1994 .

[28]  J. Tinsley Oden,et al.  Computable Error Estimators and Adaptive Techniques for Fluid Flow Problems , 2003 .

[29]  J. Tinsley Oden,et al.  Hierarchical modeling of heterogeneous solids , 1996 .