Unconditional Optimal Error Estimates of BDF–Galerkin FEMs for Nonlinear Thermistor Equations

In this paper we study linearized backward differential formula (BDF) type schemes with Galerkin finite element approximations for the time-dependent nonlinear thermistor equations. Optimal $$L^2$$L2 error estimates for the proposed schemes are proved unconditionally. The proof consists of two steps. First, the boundedness of the numerical solution in certain strong norms is obtained by a temporal-spatial error splitting argument. Second, a traditional approach is used to provide an optimal $$L^2$$L2 error estimate for $$r$$r-th order FEMs $$(r \ge 1)$$(r≥1). Numerical experiments in both two and three dimensional spaces are conducted to confirm our theoretical analysis and show the high order accuracy and unconditional stability (convergence) of the linearized BDF–Galerkin FEMs.

[1]  Guangwei Yuan,et al.  Existence and uniqueness of the C a solution for the thermistor problem with mixed boundary value , 1994 .

[2]  Huadong Gao,et al.  Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations , 2013, Journal of Scientific Computing.

[3]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[4]  Weiwei Sun,et al.  Unconditionally Optimal Error Estimates of a Crank-Nicolson Galerkin Method for the Nonlinear Thermistor Equations , 2012, SIAM J. Numer. Anal..

[5]  Guangwei Yuan,et al.  Regularity of solutions of the thermistor problem , 1994 .

[6]  Weiwei Sun,et al.  Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..

[7]  W. Allegretto,et al.  Existence of solutions for the time-dependent thermistor equations , 1992 .

[8]  Sun-Sig Byun,et al.  Elliptic equations with measurable coefficients in Reifenberg domains , 2010 .

[9]  Wenbin Chen,et al.  Efficient and Long-Time Accurate Second-Order Methods for Stokes-Darcy System , 2012, 1211.0567.

[10]  Jie Liu,et al.  Simple and Efficient ALE Methods with Provable Temporal Accuracy up to Fifth Order for the Stokes Equations on Time Varying Domains , 2013, SIAM J. Numer. Anal..

[11]  Ya-Zhe Chen,et al.  Second Order Elliptic Equations and Elliptic Systems , 1998 .

[12]  Huadong Gao,et al.  Optimal Error Estimates of a Linearized Backward Euler FEM for the Landau-Lifshitz Equation , 2014, SIAM J. Numer. Anal..

[13]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[14]  Weiwei Sun,et al.  Error Estimates of Splitting Galerkin Methods for Heat and Sweat Transport in Textile Materials , 2013, SIAM J. Numer. Anal..

[15]  Weiwei Sun,et al.  Finite difference methods for a nonlinear and strongly coupled heat and moisture transport system in textile materials , 2012, Numerische Mathematik.

[16]  Mats G. Larson,et al.  Convergence analysis of finite element approximations of the Joule heating problem in three spatial dimensions , 2010 .

[17]  Walter Allegretto,et al.  Existence and long time behaviour of solutions to obstacle thermistor equations , 2002 .

[18]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[19]  Marcus R. Garvie,et al.  A three level finite element approximation of a pattern formation model in developmental biology , 2014, Numerische Mathematik.

[20]  Peter Schlattmann,et al.  Theory and Algorithms , 2009 .

[21]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[22]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[23]  Stig Larsson,et al.  Linearly Implicit Finite Element Methods for the Time-Dependent Joule Heating Problem , 2005 .

[24]  M. Zlámal Curved Elements in the Finite Element Method. I , 1973 .

[25]  Michel Crouzeix,et al.  Linearly implicit methods for nonlinear parabolic equations , 2003, Math. Comput..

[26]  Giovanni Cimatti,et al.  Existence of weak solutions for the nonstationary problem of the Joule heating of a conductor , 1992 .

[27]  V. Thomée Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .

[28]  C. Simader,et al.  On Dirichlet's Boundary Value Problem , 1972 .

[29]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[30]  Ohannes A. Karakashian,et al.  On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations , 1982 .

[31]  Buyang Li,et al.  Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations , 2012, 1208.4698.

[32]  Charles M. Elliott,et al.  A finite element model for the time-dependent Joule heating problem , 1995 .

[33]  Louis Nirenberg,et al.  An extended interpolation inequality , 1966 .

[34]  D. R. Westbrook,et al.  Numerical solutions of the thermistor equations , 1997 .