Identification of in vivo substrates of the chaperonin GroEL

The chaperonin GroEL has an essential role in mediating protein folding in the cytosol of Escherichia coli. Here we show that GroEL interacts strongly with a well-defined set of approximately 300 newly translated polypeptides, including essential components of the transcription/translation machinery and metabolic enzymes. About one third of these proteins are structurally unstable and repeatedly return to GroEL for conformational maintenance. GroEL substrates consist preferentially of two or more domains with αβ-folds, which contain α-helices and buried β-sheets with extensive hydrophobic surfaces. These proteins are expected to fold slowly and be prone to aggregation. The hydrophobic binding regions of GroEL may be well adapted to interact with the non-native states of αβ-domain proteins.

[1]  Rolf Apweiler,et al.  The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1998 , 1998, Nucleic Acids Res..

[2]  D. Baker,et al.  Contact order, transition state placement and the refolding rates of single domain proteins. , 1998, Journal of molecular biology.

[3]  RosemanAM ChenS FurtakK FentonWA SaibilHR HorwichAL RyeHS GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. , 1999 .

[4]  S. Pedersen Escherichia coli ribosomes translate in vivo with variable rate. , 1984, The EMBO journal.

[5]  Stuart L. Meyer,et al.  Data analysis for scientists and engineers , 1975 .

[6]  John C. Wootton,et al.  Statistics of Local Complexity in Amino Acid Sequences and Sequence Databases , 1993, Comput. Chem..

[7]  A. Horwich,et al.  The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex , 1997, Nature.

[8]  Angelika Görg,et al.  Two‐dimensional electrophoresis. The current state of two‐dimensional electrophoresis with immobilized pH gradients , 1988 .

[9]  Rolf Apweiler,et al.  The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000 , 2000, Nucleic Acids Res..

[10]  F. Hartl,et al.  Protein folding in the cell: competing models of chaperonin function , 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[11]  A. Görg,et al.  The current state of two‐dimensional electrophoresis with immobilized pH gradients , 2000, Electrophoresis.

[12]  Rolf Apweiler,et al.  The SWISS-PROT protein sequence data bank and its supplement TrEMBL , 1997, Nucleic Acids Res..

[13]  C. Georgopoulos,et al.  The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures , 1989, Journal of bacteriology.

[14]  A. Plückthun,et al.  The Escherichia coli heat shock proteins GroEL and GroES modulate the folding of the beta‐lactamase precursor. , 1990, The EMBO journal.

[15]  P. Argos,et al.  Seventy‐five percent accuracy in protein secondary structure prediction , 1997, Proteins.

[16]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[17]  L. Gierasch,et al.  Different conformations for the same polypeptide bound to chaperones DnaK and GroEL , 1992, Nature.

[18]  S. Darst,et al.  Structure of the Escherichia coli RNA polymerase alpha subunit amino-terminal domain. , 1999, Science.

[19]  F. Hartl,et al.  Mechanism of chaperonin action: GroES binding and release can drive GroEL‐mediated protein folding in the absence of ATP hydrolysis. , 1996, The EMBO journal.

[20]  H. Langen,et al.  Identification of proteins by matrix-assisted laser desorption ionization-mass spectrometry following in-gel digestion in low-salt, nonvolatile buffer and simplified peptide recovery. , 1997, Analytical biochemistry.

[21]  F. Neidhardt,et al.  The gene‐protein database of Escherichia coli: Edition 5 , 1992, Electrophoresis.

[22]  D. Hochstrasser,et al.  A nonlinear wide‐range immobilized pH gradient for two‐dimensional electrophoresis and its definition in a relevant pH scale , 1993, Electrophoresis.

[23]  M. Riley,et al.  Gene products of Escherichia coli: sequence comparisons and common ancestries. , 1995, Molecular biology and evolution.

[24]  R. Burgess,et al.  The cloning and sequence of the gene encoding the omega subunit of Escherichia coli RNA polymerase. , 1986, Gene.

[25]  R. Nussinov,et al.  Favorable domain size in proteins. , 1998, Folding & design.

[26]  F. Hartl,et al.  Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria , 1989, Nature.

[27]  P. Voziyan,et al.  Partitioning of Rhodanese onto GroEL , 1998, The Journal of Biological Chemistry.

[28]  Peter D. Karp,et al.  EcoCyc: Encyclopedia of Escherichia coli genes and metabolism , 1998, Nucleic Acids Res..

[29]  M. Wada,et al.  Genetic suppression of a temperature-sensitive groES mutation by an altered subunit of RNA polymerase of Escherichia coli K-12 , 1987, Journal of bacteriology.

[30]  P Bork,et al.  Homology-based fold predictions for Mycoplasma genitalium proteins. , 1998, Journal of molecular biology.

[31]  F. Hartl,et al.  Molecular chaperones in cellular protein folding. , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[32]  R. Ellis,et al.  Roles of molecular chaperones in protein folding , 1994 .

[33]  C. Georgopoulos,et al.  Role of the major heat shock proteins as molecular chaperones. , 1993, Annual review of cell biology.

[34]  S. Radford,et al.  Structural and mechanistic consequences of polypeptide binding by GroEL. , 1997, Folding & design.

[35]  A. Horwich,et al.  Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL , 1997, Nature.

[36]  G. Lorimer,et al.  Complex interactions between the chaperonin 60 molecular chaperone and dihydrofolate reductase. , 1991, Biochemistry.

[37]  Walid A Houry,et al.  In Vivo Observation of Polypeptide Flux through the Bacterial Chaperonin System , 1997, Cell.

[38]  S. Darst,et al.  Structure of the Escherichia coli RNA Polymerase α Subunit Amino-Terminal Domain , 1998 .

[39]  Tim J. P. Hubbard,et al.  SCOP: a structural classification of proteins database , 1998, Nucleic Acids Res..

[40]  K. Furtak,et al.  Folding in vivo of bacterial cytoplasmic proteins: Role of GroEL , 1993, Cell.

[41]  A. Horwich,et al.  Structure and function in GroEL-mediated protein folding. , 1998, Annual review of biochemistry.

[42]  J. Ellis Chaperonins , 1999, Current Biology.

[43]  C. Georgopoulos,et al.  Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase. Different mechanisms for the same activity. , 1993, The Journal of biological chemistry.

[44]  G. Lorimer,et al.  Chaperonin-facilitated refolding of ribulosebisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are K+ dependent. , 1990, Biochemistry.

[45]  E Gianazza,et al.  Immobilized pH gradients. , 1988, Trends in biochemical sciences.

[46]  James E. Bray,et al.  The CATH Database provides insights into protein structure/function relationships , 1999, Nucleic Acids Res..

[47]  K Nishikawa,et al.  The folding type of a protein is relevant to the amino acid composition. , 1986, Journal of biochemistry.

[48]  D Eisenberg,et al.  Oligomer formation by 3D domain swapping: a model for protein assembly and misassembly. , 1997, Advances in protein chemistry.

[49]  C DeLisi,et al.  The detection and classification of membrane-spanning proteins. , 1985, Biochimica et biophysica acta.

[50]  Dmitrij Frishman,et al.  PEDANTic genome analysis , 1997 .

[51]  Y. Kashi,et al.  Residues in chaperonin GroEL required for polypeptide binding and release , 1994, Nature.

[52]  Peter D. Karp,et al.  Eco Cyc: encyclopedia of Escherichia coli genes and metabolism , 1999, Nucleic Acids Res..

[53]  R. Ellis Molecular chaperones: Avoiding the crowd , 1997, Current Biology.

[54]  Helen R. Saibil,et al.  GroEL-GroES Cycling ATP and Nonnative Polypeptide Direct Alternation of Folding-Active Rings , 1999, Cell.

[55]  D Eisenberg,et al.  Hydrophobicity and amphiphilicity in protein structure , 1986, Journal of cellular biochemistry.