Totally Balanced Dissimilarities

We show in this paper a bijection between totally balanced hypergraphs and so-called totally balanced dissimilarities. We give an efficient way ( O ( n 3 ) where n is the number of elements) to (i) recognize if a given dissimilarity is totally balanced and (ii) approximate it if it is not the case. We also introduce a new kind of dissimilarity which generalizes chordal graphs and allows a polynomial number of clusters that can be easily computed and interpreted.

[1]  Jeremy P. Spinrad,et al.  Efficient graph representations , 2003, Fields Institute monographs.

[2]  Jenö Lehel A characterization of totally balanced hypergraphs , 1985, Discret. Math..

[3]  Robert R. Sokal,et al.  A statistical method for evaluating systematic relationships , 1958 .

[4]  François Brucker,et al.  Crown-free Lattices and Their Related Graphs , 2011, Order.

[5]  Richard P. Anstee,et al.  Characterizations of Totally Balanced Matrices , 1984, J. Algorithms.

[6]  G. Dirac On rigid circuit graphs , 1961 .

[7]  Jean Diatta,et al.  From Apresjan Hierarchies and Bandelt-Dress Weak hierarchies to Quasi-hierarchies , 1994 .

[8]  Patrice Bertrand Set Systems and Dissimilarities , 2000, Eur. J. Comb..

[9]  N. Henley A psychological study of the semantics of animal terms , 1969 .

[10]  François Brucker From hypertrees to arboreal quasi-ultrametrics , 2005, Discret. Appl. Math..

[11]  François Brucker,et al.  Parsimonious cluster systems , 2009, Adv. Data Anal. Classif..

[12]  Richard P. Anstee Hypergraphs with no special cycles , 1983, Comb..

[13]  Jeremy P. Spinrad,et al.  Doubly Lexical Ordering of Dense 0 - 1 Matrices , 1993, Inf. Process. Lett..

[14]  Jean-Pierre Barthélemy,et al.  Binary clustering , 2008, Discret. Appl. Math..

[15]  A. Dress,et al.  Weak hierarchies associated with similarity measures--an additive clustering technique. , 1989, Bulletin of mathematical biology.

[16]  Anna Lubiw,et al.  Doubly Lexical Orderings of Matrices , 1987, SIAM J. Comput..

[17]  Martin Farber,et al.  Characterizations of strongly chordal graphs , 1983, Discret. Math..