Reconfigurable nanoantennas using electron-beam manipulation

Plasmonic nanoantennas have been of increasing interest due to their ability to confine and enhance electric fields in deep sub-wavelength volumes, leading to large near-field optical forces and high refractive index sensitivity. Recently, to enhance the response for sensor applications, metal nanoantennas have been fabricated on pillars. An overlooked consequence of this elevated geometry is the introduction of the mechanical properties, for example, stiffness, as a tunable degree of freedom. Here we demonstrate pillar-bowtie nanoantenna arrays, fabricated on optically transparent SiO2, as a candidate system that couples intrinsic mechanical and electromagnetic degrees of freedom via gradient forces. We show that using a standard scanning electron microscope, individual nanoantenna gap sizes can be controllably tuned down to 5 nm, a factor of ~4 × smaller than what is currently achievable using conventional electron-beam lithography. This approach opens new avenues for fabricating reconfigurable nanoantennas that can inform exciting photonic applications.

[1]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[2]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[3]  Momentum transfer to small particles by passing electron beams , 2004, 0708.0873.

[4]  A. Hohenau,et al.  Grating-induced plasmon mode in gold nanoparticle arrays. , 2005, The Journal of chemical physics.

[5]  George C Schatz,et al.  Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. , 2005, Nano letters.

[6]  H. Fredriksson,et al.  Enhanced nanoplasmonic optical sensors with reduced substrate effect. , 2008, Nano letters.

[7]  Kun Zheng,et al.  Electron-beam-assisted superplastic shaping of nanoscale amorphous silica , 2010, Nature communications.

[8]  S. Retterer,et al.  Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. , 2010, Nano letters.

[9]  J. Aizpurua,et al.  Electromagnetic forces on plasmonic nanoparticles induced by fast electron beams , 2010 .

[10]  F. D. Abajo,et al.  Optical excitations in electron microscopy , 2009, 0903.1669.

[11]  Steven G. Johnson,et al.  The Casimir effect in microstructured geometries , 2011 .

[12]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[13]  Liesbet Lagae,et al.  Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. , 2011, Nano letters.

[14]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[15]  J. Aizpurua,et al.  Plasmonic nanobilliards: controlling nanoparticle movement using forces induced by swift electrons. , 2011, Nano letters.

[16]  J. Aizpurua,et al.  Nanoparticle Movement: Plasmonic Forces and Physical Constraints , 2011, Microscopy and Microanalysis.

[17]  K. Toussaint,et al.  Femtosecond-Pulsed Plasmonic Nanotweezers , 2012, Scientific Reports.

[18]  Jaeyoun Kim,et al.  Joining plasmonics with microfluidics: from convenience to inevitability. , 2012, Lab on a chip.

[19]  Hooman Mohseni,et al.  Optomechanical nanoantenna. , 2012, Optics letters.

[20]  G. Arya,et al.  Self-orienting nanocubes for the assembly of plasmonic nanojunctions. , 2012, Nature nanotechnology.

[21]  Jong G. Ok,et al.  Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters , 2012 .

[22]  Lin-wang Wang,et al.  Electron beam manipulation of nanoparticles. , 2012, Nano letters.

[23]  Kin Hung Fung,et al.  Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. , 2012, Nano letters.

[24]  Guohui Xiao,et al.  Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit , 2013, Nature Communications.

[25]  Donald M. Tennant,et al.  Progress and issues in e-beam and other top down nanolithography , 2013 .

[26]  P. Sadler,et al.  Challenges for metals in medicine: how nanotechnology may help to shape the future. , 2013, ACS nano.

[27]  Rafael Yuste,et al.  Nanotools for neuroscience and brain activity mapping. , 2013, ACS nano.

[28]  Haimei Zheng Using molecular tweezers to move and image nanoparticles. , 2013, Nanoscale.

[29]  M. Gartia,et al.  Colorimetric Plasmon Resonance Imaging Using Nano Lycurgus Cup Arrays , 2013 .

[30]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[31]  Kimani C. Toussaint,et al.  Simultaneously tuning the electric and magnetic plasmonic response using capped bi-metallic nanoantennas. , 2014, Nanoscale.

[32]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[33]  Aydogan Ozcan,et al.  Handheld high-throughput plasmonic biosensor using computational on-chip imaging , 2014, Light: Science & Applications.

[34]  Z. Ren,et al.  Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. , 2014, Nature nanotechnology.