NMR structure of an anti-gp120 antibody complex with a V3 peptide reveals a surface important for co-receptor binding.

[1]  G. Bodenhausen,et al.  Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy , 1980 .

[2]  B C Finzel,et al.  Three-dimensional structure of an antibody-antigen complex. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[3]  A. Lesk,et al.  Canonical structures for the hypervariable regions of immunoglobulins. , 1987, Journal of molecular biology.

[4]  L. Arthur,et al.  Antibodies that inhibit fusion of human immunodeficiency virus-infected cells bind a 24-amino acid sequence of the viral envelope, gp120. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[5]  H. Lyerly,et al.  Characteristics of a neutralizing monoclonal antibody to the HIV envelope glycoprotein. , 1988, AIDS research and human retroviruses.

[6]  S. Matsushita,et al.  Characterization of a human immunodeficiency virus neutralizing monoclonal antibody and mapping of the neutralizing epitope , 1988, Journal of virology.

[7]  Ad Bax,et al.  Three-dimensional heteronuclear NMR of nitrogen-15 labeled proteins , 1989 .

[8]  A. Lesk,et al.  Conformations of immunoglobulin hypervariable regions , 1989, Nature.

[9]  Paul C. Driscoll,et al.  Practical aspects of proton-carbon-carbon-proton three-dimensional correlation spectroscopy of 13C-labeled proteins , 1990 .

[10]  J. Davide,et al.  Conserved sequence and structural elements in the HIV-1 principal neutralizing determinant. , 1990, Science.

[11]  L. Kay,et al.  Three-dimensional NOESY-HMQC spectroscopy of a 13C-labeled protein , 1990 .

[12]  F. Dahlquist,et al.  Three-dimensional 13C-resolved proton NOE spectroscopy of uniformly 13C-labeled proteins for the NMR assignment and structure determination of larger molecules , 1990 .

[13]  G. Marius Clore,et al.  1H1H correlation via isotropic mixing of 13C magnetization, a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins , 1990 .

[14]  D. Givol,et al.  The minimal antigen-binding fragment of antibodies--Fv fragment. , 1991, Molecular immunology.

[15]  A M Gronenborn,et al.  Structures of larger proteins in solution: three- and four-dimensional heteronuclear NMR spectroscopy. , 1991, Science.

[16]  J. Goudsmit,et al.  Minimal requirements for the human immunodeficiency virus type 1 V3 domain to support the syncytium-inducing phenotype: analysis by single amino acid substitution , 1992, Journal of virology.

[17]  Axel T. Brunger,et al.  X-PLOR Version 3.1: A System for X-ray Crystallography and NMR , 1992 .

[18]  A. Zvi,et al.  Solution conformation of a peptide corresponding to the principal neutralizing determinant of HIV-1IIIB: a two-dimensional NMR study. , 1992, Biochemistry.

[19]  S. Grzesiek,et al.  Correlation of Backbone Amide and Aliphatic Side-Chain Resonances in 13C/15N-Enriched Proteins by Isotropic Mixing of 13C Magnetization , 1993 .

[20]  L. Kay A Three-Dimensional NMR Experiment for the Separation of Aliphatic Carbon Chemical Shifts via the Carbonyl Chemical Shift in 15N, 13C-Labeled Proteins , 1993 .

[21]  Ad Bax,et al.  Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins , 1993, Journal of biomolecular NMR.

[22]  L. Kay,et al.  Two-dimensional NMR experiments for correlating carbon-13.beta. and proton.delta./.epsilon. chemical shifts of aromatic residues in 13C-labeled proteins via scalar couplings , 1993 .

[23]  S. Grzesiek,et al.  The Importance of Not Saturating H2o in Protein NMR : application to Sensitivity Enhancement and Noe Measurements , 1993 .

[24]  S. Grzesiek,et al.  The Origin and Removal of Artifacts in 3D HCACO Spectra of Proteins Uniformly Enriched with 13C , 1993 .

[25]  L. Kay Pulsed-field gradient-enhanced three-dimensional NMR experiment for correlating 13C.alpha./.beta., 13C', and 1H.alpha. chemical shifts in uniformly carbon-13-labeled proteins dissolved in water , 1993 .

[26]  A. Bax,et al.  Measurement of three-bond nitrogen-carbon J couplings in proteins uniformly enriched in nitrogen-15 and carbon-13 , 1993 .

[27]  R L Stanfield,et al.  Crystal structure of a human immunodeficiency virus type 1 neutralizing antibody, 50.1, in complex with its V3 loop peptide antigen. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Bruce A. Johnson,et al.  NMR View: A computer program for the visualization and analysis of NMR data , 1994, Journal of biomolecular NMR.

[29]  I. Wilson,et al.  Crystal structure of the principal neutralization site of HIV-1. , 1994, Science.

[30]  S. Grzesiek,et al.  Measurement of homo- and heteronuclear J couplings from quantitative J correlation. , 1994, Methods in enzymology.

[31]  T. Matthews Dilemma of neutralization resistance of HIV-1 field isolates and vaccine development. , 1994, AIDS research and human retroviruses.

[32]  S. Grzesiek,et al.  Measurement of HN-Hα J couplings in calcium-free calmodulin using new 2D and 3D water-flip-back methods , 1994, Journal of biomolecular NMR.

[33]  J. Wieruszeski,et al.  Use of a water flip-back pulse in the homonuclear NOESY experiment , 1995, Journal of biomolecular NMR.

[34]  S. Grzesiek,et al.  Multiple-Quantum Line Narrowing for Measurement of H.alpha.-H.beta. J Couplings in Isotopically Enriched Proteins , 1995 .

[35]  M. Eisenstein,et al.  NMR mapping of the antigenic determinant recognized by an anti-gp120, human immunodeficiency virus neutralizing antibody. , 1995, European journal of biochemistry.

[36]  C. Barbas,et al.  Primary isolates of human immunodeficiency virus type 1 are relatively resistant to neutralization by monoclonal antibodies to gp120, and their neutralization is not predicted by studies with monomeric gp120 , 1995, Journal of virology.

[37]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[38]  D. Birx,et al.  Differential role of V3-specific antibodies in neutralization assays involving primary and laboratory-adapted isolates of HIV type 1. , 1995, AIDS research and human retroviruses.

[39]  Ying Sun,et al.  The β-Chemokine Receptors CCR3 and CCR5 Facilitate Infection by Primary HIV-1 Isolates , 1996, Cell.

[40]  Paul E. Kennedy,et al.  HIV-1 Entry Cofactor: Functional cDNA Cloning of a Seven-Transmembrane, G Protein-Coupled Receptor , 1996, Science.

[41]  J. Thornton,et al.  AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR , 1996, Journal of biomolecular NMR.

[42]  A. Horovitz,et al.  Contribution of Arginine Residues in the RP135 Peptide Derived from the V3 Loop of gp120 to Its Interaction with the Fv Fragment of the 0.5β HIV-1 Neutralizing Antibody* , 1996, The Journal of Biological Chemistry.

[43]  A. Garzino-Demo,et al.  The V3 domain of the HIV–1 gp120 envelope glycoprotein is critical for chemokine–mediated blockade of infection , 1996, Nature Medicine.

[44]  Joseph Sodroski,et al.  CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5 , 1996, Nature.

[45]  Virginia Litwin,et al.  HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5 , 1996, Nature.

[46]  Marc Parmentier,et al.  A Dual-Tropic Primary HIV-1 Isolate That Uses Fusin and the β-Chemokine Receptors CKR-5, CKR-3, and CKR-2b as Fusion Cofactors , 1996, Cell.

[47]  Stephen C. Peiper,et al.  Identification of a major co-receptor for primary isolates of HIV-1 , 1996, Nature.

[48]  William C. Olson,et al.  CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5 , 1996, Nature.

[49]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[50]  C. Broder,et al.  CC CKR5: A RANTES, MIP-1α, MIP-1ॆ Receptor as a Fusion Cofactor for Macrophage-Tropic HIV-1 , 1996, Science.

[51]  A. Zvi,et al.  Conformation of the principal neutralizing determinant of human immunodeficiency virus type 1 in complex with an anti-gp120 virus neutralizing antibody studied by two-dimensional nuclear magnetic resonance difference spectroscopy. , 1997, Biochemistry.

[52]  S. Grzesiek,et al.  Two-Dimensional NMR Methods for Determining χ1 Angles of Aromatic Residues in Proteins from Three-Bond JC‘Cγ and JNCγ Couplings , 1997 .

[53]  A. Lesk,et al.  Standard conformations for the canonical structures of immunoglobulins. , 1997, Journal of molecular biology.

[54]  R. Riek,et al.  Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[55]  B. Korber,et al.  A new classification for HIV-1 , 1998, Nature.

[56]  J. Sodroski,et al.  Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody , 1998, Nature.

[57]  O. Yoshie,et al.  T-Tropic Human Immunodeficiency Virus Type 1 (HIV-1)-Derived V3 Loop Peptides Directly Bind to CXCR-4 and Inhibit T-Tropic HIV-1 Infection , 1998, Journal of Virology.

[58]  Interaction of human immunodeficiency virus type 1 envelope glycoprotein V3 loop with CCR5 and CD4 at the membrane of human primary macrophages. , 1998, AIDS research and human retroviruses.

[59]  A Tramontano,et al.  Conformations of the third hypervariable region in the VH domain of immunoglobulins. , 1998, Journal of molecular biology.

[60]  Ying Sun,et al.  A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. , 1998, Science.

[61]  R. Riek,et al.  Transverse Relaxation-Optimized Spectroscopy (TROSY) for NMR Studies of Aromatic Spin Systems in 13C-Labeled Proteins , 1998 .

[62]  I. Wilson,et al.  Dual conformations for the HIV-1 gp120 V3 loop in complexes with different neutralizing fabs. , 1999, Structure.

[63]  V. Tugarinov,et al.  Letter to the Editor: Backbone and Cβ assignments of the anti-gp120 antibody Fv fragment complexed with an antigenic peptide , 1999, Journal of biomolecular NMR.

[64]  G. Zhu,et al.  Gradient and sensitivity enhancement of 2D TROSY with water flip-back, 3D NOESY-TROSY and TOCSY-TROSY experiments , 1999, Journal of biomolecular NMR.

[65]  F. Verrier,et al.  Role of the HIV type 1 glycoprotein 120 V3 loop in determining coreceptor usage. , 1999, AIDS research and human retroviruses.

[66]  Rina Levy,et al.  A cis proline turn linking two β-hairpin strands in the solution structure of an antibody-bound HIV-1IIIB V3 peptide , 1999, Nature Structural Biology.

[67]  M. Essex,et al.  Hypervariable region 3 residues of HIV type 1 gp120 involved in CCR5 coreceptor utilization: therapeutic and prophylactic implications. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Q. Sattentau,et al.  Constitutive cell surface association between CD4 and CCR5. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[69]  A. Zvi,et al.  Solid–state NMR evidence for an antibody–dependent conformation of the V3 loop of HIV–1 gp120 , 1999, Nature Structural Biology.

[70]  A. Horovitz,et al.  A model of a gp120 V3 peptide in complex with an HIV-neutralizing antibody based on NMR and mutant cycle-derived constraints. , 2000, European journal of biochemistry.