Global optimization by coupled local minimizers and its application to FE model updating

Coupled local minimizers (CLM) is a new method applicable to global optimization of functions with multiple local minima. In CLM a cooperative search mechanism is set up using a population of local optimizers, which are coupled during the search process by synchronization constraints. CLM is characterised by a relative fast convergence since the local optimizers are gradient-based. The combination of both, the coupled parallel strategy and the fast convergence, offers an efficient global optimization algorithm. In the paper the CLM method is described and is illustrated with a test function. Due to the simultaneous and coupled search of a whole population of optimizers, CLM is able to find the global minimum of the test function. Next, CLM is successfully applied to FE model updating using experimental modal data. In an example the damage pattern of a reinforced concrete beam is identified.

[1]  Pruettha Nanakorn,et al.  An adaptive penalty function in genetic algorithms for structural design optimization , 2001 .

[2]  F. Sonmez,et al.  Generating optimal 2D structural designs using simulated annealing , 2001 .

[3]  Guido De Roeck,et al.  A method for updating finite element models of civil engineering structures, applied on a railway bridge , 2001 .

[4]  O. Hasançebi,et al.  Layout optimization of trusses using simulated annealing , 2000 .

[5]  Guido De Roeck,et al.  Damage Detection on a Prestressed Concrete Bridge and RC Beams Using Dynamic System Identification , 1999 .

[6]  Nuno M. M. Maia,et al.  Theoretical and Experimental Modal Analysis , 1997 .

[7]  Jamshid Ghaboussi,et al.  Evolution of Optimum Structural Shapes Using Genetic Algorithm , 1998 .

[8]  Johan A. K. Suykens,et al.  Coupled local minimizers: alternative formulations and extensions , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[9]  Guido De Roeck,et al.  FEM updating of a reinforced concrete beam using damage functions , 2002 .

[10]  Guido De Roeck,et al.  REFERENCE-BASED STOCHASTIC SUBSPACE IDENTIFICATION FOR OUTPUT-ONLY MODAL ANALYSIS , 1999 .

[11]  O. Hasançebi,et al.  Optimal design of planar and space structures with genetic algorithms , 2000 .

[12]  M. Papadrakakis,et al.  Structural optimization using evolutionary algorithms , 2002 .

[13]  T. K. Kundra,et al.  Genetic algorithms for optimal structural dynamic modification , 2001 .

[14]  Nicholas A J Lieven,et al.  DYNAMIC FINITE ELEMENT MODEL UPDATING USING SIMULATED ANNEALING AND GENETIC ALGORITHMS , 1997 .

[15]  R. Fox,et al.  Rates of change of eigenvalues and eigenvectors. , 1968 .

[16]  Philip E. Gill,et al.  Practical optimization , 1981 .

[17]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[18]  Singiresu S. Rao Engineering Optimization : Theory and Practice , 2010 .

[19]  Ting-Yu Chen,et al.  Improvements of simulated annealing in optimal structural designs , 2000 .

[20]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[21]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[22]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[23]  Johan A. K. Suykens,et al.  Intelligence and Cooperative Search by Coupled Local Minimizers , 2002, Int. J. Bifurc. Chaos.