Solution of geometrically parametrised problems within a CAD environment via model order reduction

The main objective of this work is to describe a general and original approach for computing an off-line solution for a set of parameters describing the geometry of the domain. That is, a solution able to include information for different geometrical parameter values and also allowing to compute readily the sensitivities. Instead of problem dependent approaches, a general framework is presented for standard engineering environments where the geometry is defined by means of NURBS. The parameters controlling the geometry are now the control points characterising the NURBS curves or surfaces. The approach proposed here, valid for 2D and 3D scenarios, allows a seamless integration with CAD preprocessors. The proper generalised decomposition (PGD), which is applied here to compute explicit geometrically parametrised solutions, circumvents the curse of dimensionality. Moreover, optimal convergence rates are shown for PGD approximations of incompressible flows.

[1]  A. Huerta,et al.  Parametric solutions involving geometry: A step towards efficient shape optimization , 2014 .

[2]  J. Hesthaven,et al.  Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations , 2007 .

[3]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[4]  George Biros,et al.  A fast algorithm for simulating vesicle flows in three dimensions , 2011, J. Comput. Phys..

[5]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids - Part II: Transient simulation using space-time separated representations , 2007 .

[6]  A. DeSimone,et al.  Optimal strokes for axisymmetric microswimmers , 2009, The European physical journal. E, Soft matter.

[7]  David Néron,et al.  Integration of PGD-virtual charts into an engineering design process , 2016 .

[8]  Gianluigi Rozza,et al.  Fundamentals of reduced basis method for problems governed by parametrized PDEs and applications , 2014 .

[9]  D. Faddeev,et al.  Computational methods of linear algebra , 1981 .

[10]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[11]  Francisco Chinesta,et al.  PGD for solving multidimensional and parametric models , 2014 .

[12]  R. Freund Model reduction methods based on Krylov subspaces , 2003, Acta Numerica.

[13]  Adrien Leygue,et al.  A First Step Towards the Use of Proper General Decomposition Method for Structural Optimization , 2010 .

[14]  T. Heuzé,et al.  Parametric modeling of an electromagnetic compression device with the proper generalized decomposition , 2016 .

[15]  A. U.S.,et al.  Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics , 2009 .

[16]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[17]  Charbel Farhat,et al.  Reduced-order fluid/structure modeling of a complete aircraft configuration , 2006 .

[18]  A. Huerta,et al.  Proper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: Application to harbor agitation , 2015 .

[19]  Pedro Díez,et al.  Proper generalized decomposition of a geometrically parametrized heat problem with geophysical applications , 2015 .

[20]  K. Morgan,et al.  The generation of arbitrary order curved meshes for 3D finite element analysis , 2013 .

[21]  Samuel,et al.  Propulsion of Microorganisms by Surface Distortions. , 1996, Physical review letters.

[22]  Oubay Hassan,et al.  The generation of triangular meshes for NURBS‐enhanced FEM , 2016 .

[23]  D. G. Mead Newton's Identities , 1992 .

[24]  A. J. Gil,et al.  A unified approach for a posteriori high-order curved mesh generation using solid mechanics , 2016 .

[25]  A. Ammar,et al.  PGD-Based Computational Vademecum for Efficient Design, Optimization and Control , 2013, Archives of Computational Methods in Engineering.

[26]  Alston S. Householder,et al.  The Theory of Matrices in Numerical Analysis , 1964 .

[27]  F. Chinesta,et al.  Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity , 2012 .

[28]  Adrien Leygue,et al.  The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer , 2013 .

[29]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[30]  Arthur Cayley,et al.  II. A memoir on the theory of matrices , 1858, Philosophical Transactions of the Royal Society of London.

[31]  Gianluigi Rozza,et al.  Reduced Order Methods for Modeling and Computational Reduction , 2013 .

[32]  Antonio Huerta,et al.  Generalized parametric solutions in Stokes flow , 2017, 1704.02817.