From Fienup's phase retrieval techniques to regularized inversion for in-line holography: tutorial.

This paper includes a tutorial on how to reconstruct in-line holograms using an inverse problems approach, starting with modeling the observations, selecting regularizations and constraints, and ending with the design of a reconstruction algorithm. A special focus is placed on the connections between the numerous alternating projections strategies derived from Fienup's phase retrieval technique and the inverse problems framework. In particular, an interpretation of Fienup's algorithm as iterates of a proximal gradient descent for a particular cost function is given. Reconstructions from simulated and experimental holograms of micrometric beads illustrate the theoretical developments. The results show that the transition from alternating projections techniques to the inverse problems formulation is straightforward and advantageous.

[1]  S. Marchesini,et al.  Invited article: a [corrected] unified evaluation of iterative projection algorithms for phase retrieval. , 2006, The Review of scientific instruments.

[2]  N C Gallagher,et al.  Convergence of a spectrum shaping algorithm. , 1974, Applied optics.

[3]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[4]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[5]  Zeev Zalevsky,et al.  Resolution enhancement in quantitative phase microscopy , 2019, Advances in Optics and Photonics.

[6]  Marc Teboulle,et al.  Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems , 2009, IEEE Transactions on Image Processing.

[7]  J. Tanida,et al.  Single-shot phase imaging with a coded aperture. , 2014, Optics letters.

[8]  Jonathan Bailleul,et al.  Tomographic diffractive microscopy: Towards high-resolution 3-D real-time data acquisition, image reconstruction and display of unlabeled samples , 2017, Optics Communications.

[9]  Michael Unser,et al.  Proximity operators for phase retrieval. , 2016, Applied optics.

[10]  Keith A. Nugent,et al.  Coherent lensless X-ray imaging , 2010 .

[11]  D. R. Luke Relaxed Averaged Alternating Reflections for Diffraction Imaging , 2004, math/0405208.

[12]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[13]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[14]  Loïc Denis,et al.  Inline hologram reconstruction with sparsity constraints. , 2009, Optics letters.

[15]  J R Fienup,et al.  Reconstruction of an object from the modulus of its Fourier transform. , 1978, Optics letters.

[16]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[17]  Fabien Momey,et al.  Regularized reconstruction of absorbing and phase objects from a single in-line hologram, application to fluid mechanics and micro-biology. , 2018, Optics express.

[18]  Michael Unser,et al.  GlobalBioIm: A Unifying Computational Framework for Solving Inverse Problems , 2017 .

[19]  Richard G. Baraniuk,et al.  Compressive phase retrieval , 2007, SPIE Optical Engineering + Applications.

[20]  V. Elser Solution of the crystallographic phase problem by iterated projections. , 2002, Acta crystallographica. Section A, Foundations of crystallography.

[21]  B. Javidi,et al.  Compressive Fresnel Holography , 2010, Journal of Display Technology.

[22]  Thierry Fournel,et al.  Pixel super-resolution in digital holography by regularized reconstruction , 2017 .

[23]  Fabien Momey,et al.  Reconstruction of in-line holograms: combining model-based and regularized inversion. , 2019, Optics express.

[24]  Tatiana Latychevskaia,et al.  Iterative phase retrieval in coherent diffractive imaging: practical issues. , 2018, Applied optics.

[25]  Aharon Levi,et al.  Image restoration by the method of generalized projections with application to restoration from magnitude , 1984 .

[26]  Heinz H. Bauschke,et al.  Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[27]  T. Latychevskaia,et al.  Solution to the twin image problem in holography. , 2006, Physical review letters.

[28]  Michael Unser,et al.  Pocket guide to solve inverse problems with GlobalBioIm , 2018, Inverse Problems.

[29]  Eric Thiebaut,et al.  Optimization issues in blind deconvolution algorithms , 2002, SPIE Astronomical Telescopes + Instrumentation.

[30]  Ferréol Soulez,et al.  Inverse problem approach in particle digital holography: out-of-field particle detection made possible. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[31]  Yonina C. Eldar,et al.  Solving Systems of Random Quadratic Equations via Truncated Amplitude Flow , 2016, IEEE Transactions on Information Theory.

[32]  S. Marchesini,et al.  SPEDEN: reconstructing single particles from their diffraction patterns. , 2004, Acta crystallographica. Section A, Foundations of crystallography.

[33]  J. Miao,et al.  Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects , 1998 .

[34]  D. Gabor A New Microscopic Principle , 1948, Nature.

[35]  P. Marquet,et al.  Marker-free phase nanoscopy , 2013, Nature Photonics.

[36]  Yonina C. Eldar,et al.  GESPAR: Efficient Phase Retrieval of Sparse Signals , 2013, IEEE Transactions on Signal Processing.

[37]  Olivier Flasseur,et al.  Robust object characterization from lensless microscopy videos , 2017, 2017 25th European Signal Processing Conference (EUSIPCO).

[38]  Aggelos K. Katsaggelos,et al.  Dictionary-based phase retrieval for space-time super resolution using lens-free on-chip holographic video , 2017 .

[39]  Aude Rondepierre,et al.  On Local Convergence of the Method of Alternating Projections , 2013, Foundations of Computational Mathematics.

[40]  Hakho Lee,et al.  Sparsity-Based Pixel Super Resolution for Lens-Free Digital In-line Holography , 2016, Scientific Reports.

[41]  A. Ozcan,et al.  Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution , 2010, Optics express.

[42]  Aydogan Ozcan,et al.  Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. , 2017, Methods.

[43]  Keith A. Nugent,et al.  Coherent diffractive imaging: a new statistically regularized amplitude constraint , 2010 .

[44]  Hiroyuki Kudo,et al.  Truncated Hilbert transform and image reconstruction from limited tomographic data , 2006 .

[45]  S Marchesini,et al.  Invited article: a [corrected] unified evaluation of iterative projection algorithms for phase retrieval. , 2006, The Review of scientific instruments.

[46]  Émilie Chouzenoux,et al.  A nonconvex regularized approach for phase retrieval , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[47]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[48]  Jeffrey A. Fessler Penalized weighted least-squares image reconstruction for positron emission tomography , 1994, IEEE Trans. Medical Imaging.

[49]  J. Miao,et al.  Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities. , 2012, Journal of applied crystallography.

[50]  Heinz H. Bauschke,et al.  Hybrid projection-reflection method for phase retrieval. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[51]  F. Schmitt,et al.  Linear inverse problems in imaging , 2008, IEEE Signal Processing Magazine.

[52]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[53]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[54]  Ferréol Soulez,et al.  Inverse-problem approach for particle digital holography: accurate location based on local optimization. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[55]  Yibo Zhang,et al.  Sparsity-based multi-height phase recovery in holographic microscopy , 2016, Scientific Reports.

[56]  Falk Eilenberger,et al.  Digital holography from shadowgraphic phase estimates. , 2012, Optics letters.

[57]  E. Wolf Three-dimensional structure determination of semi-transparent objects from holographic data , 1969 .

[58]  Jean-Marc Dinten,et al.  Comparative study of fully three-dimensional reconstruction algorithms for lens-free microscopy. , 2017, Applied optics.

[59]  Yonina C. Eldar,et al.  Phase Retrieval with Application to Optical Imaging: A contemporary overview , 2015, IEEE Signal Processing Magazine.

[60]  Jeffrey A Fessler,et al.  Penalized-likelihood image reconstruction for digital holography. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.