On entropy production for controlled Markovian evolution

We consider thermodynamic systems with finitely many degrees of freedom and subject to an external control action. We derive some basic results on the dependence of the relative entropy production rate on the controlling force. Applications to macromolecular cooling and to controlling the convergence to equilibrium rate are sketched. Analogous results are derived for closed and open n-level quantum systems.

[1]  M. Pavon,et al.  Equilibrium description of a particle system in a heat bath , 1989 .

[2]  Tryphon T. Georgiou,et al.  Spectral analysis based on the state covariance: the maximum entropy spectrum and linear fractional parametrization , 2002, IEEE Trans. Autom. Control..

[3]  M. Nagasawa The adjoint process of a diffusion with reflecting barrier , 1961 .

[4]  Luc Bouten,et al.  Stochastic Schrödinger equations , 2003 .

[5]  Luc Bouten,et al.  Stochastic Schr¨ odinger equations , 2004 .

[6]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[7]  J. J. Sakurai,et al.  Modern Quantum Mechanics, Revised Edition , 1995 .

[8]  On the dynamics of diffusions and the related general electromagnetic potentials , 1982 .

[9]  A. I. Solomon,et al.  Controllability of Quantum Systems , 2003 .

[10]  Edward Nelson Dynamical Theories of Brownian Motion , 1967 .

[11]  S. L. Adler,et al.  Martingale models for quantum state reduction , 2001 .

[12]  A. Barron ENTROPY AND THE CENTRAL LIMIT THEOREM , 1986 .

[13]  Edward Nelson The adjoint Markoff process , 1958 .

[14]  Michael D. Westmoreland,et al.  Relative entropy in quantum information theory , 2000, quant-ph/0004045.

[15]  M. Miles,et al.  High-Q dynamic force microscopy in liquid and its application to living cells. , 2001, Biophysical journal.

[16]  Yuan,et al.  Thermal noise reduction of mechanical oscillators by actively controlled external dissipative forces , 2000, Ultramicroscopy.

[17]  E. Carlen,et al.  Entropy production by block variable summation and central limit theorems , 1991 .

[18]  E. T. Jaynes,et al.  Papers on probability, statistics and statistical physics , 1983 .

[19]  Herschel Rabitz,et al.  Control of molecular motion , 1996, Proc. IEEE.

[20]  U. Haussmann,et al.  TIME REVERSAL OF DIFFUSIONS , 1986 .

[21]  H Qian Relative entropy: free energy associated with equilibrium fluctuations and nonequilibrium deviations. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  J Barhen,et al.  Control of friction at the nanoscale. , 2003, Physical review letters.

[23]  S. Kullback,et al.  Information Theory and Statistics , 1959 .

[24]  Hong Qian,et al.  Entropy production of Brownian macromolecules with inertia. , 2004, Physical review letters.

[25]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[26]  T. Nieuwenhuizen What are quantum fluctuations , 2007 .

[27]  H. Spohn Entropy production for quantum dynamical semigroups , 1978 .

[28]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[29]  M. Pavon,et al.  Controlling the relative entropy evolution for classical and quantum systems , 2005, Proceedings. 2005 International Conference Physics and Control, 2005..

[30]  G. Lindblad Completely positive maps and entropy inequalities , 1975 .

[31]  D. Stroock,et al.  Probability Theory: An Analytic View. , 1995 .

[32]  R. Graham,et al.  Path-integral methods in Nonequilibrium Thermodynamics and statistics , 1978 .

[33]  Hans Föllmer,et al.  Random fields and diffusion processes , 1988 .

[34]  Philippe Blanchard,et al.  Stochastic Processes — Mathematics and Physics II , 1986 .

[35]  Michel Loève,et al.  Probability Theory I , 1977 .

[36]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[37]  Milburn,et al.  Quantum-mechanical model for continuous position measurements. , 1987, Physical review. A, General physics.

[38]  V. Vedral The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.

[39]  J. Wyatt,et al.  Thermodynamics of electrical noise in a class of nonlinear RLC networks , 1985 .

[40]  I. Csiszár Maxent, Mathematics, and Information Theory , 1996 .

[41]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[42]  M. Pavon,et al.  Controlling the density evolution of classical, thermodynamic and quantum systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[43]  L. Lecam Convergence of Estimates Under Dimensionality Restrictions , 1973 .

[44]  Tryphon T. Georgiou,et al.  Kullback-Leibler approximation of spectral density functions , 2003, IEEE Trans. Inf. Theory.

[45]  Hans Föllmer,et al.  Time reversal on Wiener space , 1986 .

[46]  D. Petz Entropy, von Neumann and the von Neumann Entropy , 2001 .

[47]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[48]  Michel Ledoux,et al.  Logarithmic Sobolev Inequalities for Unbounded Spin Systems Revisited , 2001 .

[49]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[50]  P. Seglar,et al.  Stochastic Processes in Nonequilibrium Systems , 1978 .

[51]  Claudio Altafini,et al.  Coherent control of open quantum dynamical systems , 2004 .

[52]  Edward Nelson Stochastic mechanics and random fields , 1988 .

[53]  Ericka Stricklin-Parker,et al.  Ann , 2005 .