Rational engineering of glycosaminoglycan-based Dickkopf-1 scavengers to improve bone regeneration.

[1]  L. Hofbauer,et al.  New insights into the role of glycosaminoglycans in the endosteal bone microenvironment , 2021, Biological chemistry.

[2]  H. Taipaleenmäki,et al.  Osteoporosis Treatment with Anti-Sclerostin Antibodies—Mechanisms of Action and Clinical Application , 2021, Journal of clinical medicine.

[3]  A. E. El Haj,et al.  Wnt-modified materials mediate asymmetric stem cell division to direct human osteogenic tissue formation for bone repair , 2020, Nature Materials.

[4]  Shiaw-Min Hwang,et al.  Coactivation of Endogenous Wnt10b and Foxc2 by CRISPR Activation Enhances BMSC Osteogenesis and Promotes Calvarial Bone Regeneration. , 2019, Molecular therapy : the journal of the American Society of Gene Therapy.

[5]  S. Djordjević,et al.  Dual Action of Sulfated Hyaluronan on Angiogenic Processes in Relation to Vascular Endothelial Growth Factor-A , 2019, Scientific Reports.

[6]  J. Takagi,et al.  Crystal structure of a mammalian Wnt–frizzled complex , 2019, Nature Structural & Molecular Biology.

[7]  F. Siemers,et al.  Wnt Pathway in Bone Repair and Regeneration – What Do We Know So Far , 2019, Front. Cell Dev. Biol..

[8]  A. Beck‐Sickinger,et al.  Syntheses of defined sulfated oligohyaluronans reveal structural effects, diversity and thermodynamics of GAG–protein binding† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc03649g , 2018, Chemical science.

[9]  A. V. van Wijnen,et al.  A Versatile Protocol for Studying Calvarial Bone Defect Healing in a Mouse Model. , 2017, Tissue engineering. Part C, Methods.

[10]  A. Grauer,et al.  Romosozumab or Alendronate for Fracture Prevention in Women with Osteoporosis , 2017, The New England journal of medicine.

[11]  Susan Y. Smith,et al.  Romosozumab Improves Bone Mass and Strength While Maintaining Bone Quality in Ovariectomized Cynomolgus Monkeys , 2017, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[12]  C. Cooper,et al.  Identification and management of patients at increased risk of osteoporotic fracture: outcomes of an ESCEO expert consensus meeting , 2017, Osteoporosis International.

[13]  L. Hofbauer,et al.  Sulfated hyaluronan improves bone regeneration of diabetic rats by binding sclerostin and enhancing osteoblast function. , 2016, Biomaterials.

[14]  W. Richards,et al.  A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair , 2016, Nature Communications.

[15]  D. Huster,et al.  Chemoenzymatic Synthesis of Nonasulfated Tetrahyaluronan with a Paramagnetic Tag for Studying Its Complex with Interleukin-10. , 2016, Chemistry.

[16]  L. Hofbauer,et al.  Structural and functional insights into sclerostin-glycosaminoglycan interactions in bone. , 2015, Biomaterials.

[17]  T. Rachner,et al.  Glycosaminoglycans and their sulfate derivatives differentially regulate the viability and gene expression of osteocyte-like cell lines , 2014 .

[18]  M. Anselmi,et al.  Sulfated glycosaminoglycans exploit the conformational plasticity of bone morphogenetic protein-2 (BMP-2) and alter the interaction profile with its receptor. , 2014, Biomacromolecules.

[19]  S. Samsonov,et al.  Artificial extracellular matrix composed of collagen I and highly sulfated hyaluronan interferes with TGFβ(1) signaling and prevents TGFβ(1)-induced myofibroblast differentiation. , 2013, Acta biomaterialia.

[20]  J. Delaissé,et al.  Understanding coupling between bone resorption and formation: are reversal cells the missing link? , 2013, The American journal of pathology.

[21]  Woody Sherman,et al.  Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments , 2013, Journal of Computer-Aided Molecular Design.

[22]  T. Rachner,et al.  The effect of the degree of sulfation of glycosaminoglycans on osteoclast function and signaling pathways. , 2012, Biomaterials.

[23]  Holger Gohlke,et al.  MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. , 2012, Journal of chemical theory and computation.

[24]  J. Mao,et al.  Structural and functional studies of LRP6 ectodomain reveal a platform for Wnt signaling. , 2011, Developmental cell.

[25]  W. Weis,et al.  Structural basis of Wnt signaling inhibition by Dickkopf binding to LRP5/6. , 2011, Developmental cell.

[26]  R. Moon,et al.  Crystal structures of the extracellular domain of LRP6 and its complex with DKK1 , 2011, Nature Structural &Molecular Biology.

[27]  E. Bourhis,et al.  Wnt antagonists bind through a short peptide to the first β-propeller domain of LRP5/6. , 2011, Structure.

[28]  Arun K Gosain,et al.  Testing the Critical Size in Calvarial Bone Defects: Revisiting the Concept of a Critical-Size Defect , 2010, Plastic and reconstructive surgery.

[29]  M. Viola,et al.  Modifications of hyaluronan influence the interaction with human bone morphogenetic protein-4 (hBMP-4). , 2009, Biomacromolecules.

[30]  Etienne Weiss,et al.  Therapeutic antibodies: successes, limitations and hopes for the future , 2009, British journal of pharmacology.

[31]  P. Slocombe,et al.  Characterization of the Structural Features and Interactions of Sclerostin , 2009, Journal of Biological Chemistry.

[32]  Qing Chen,et al.  Sclerostin Antibody Treatment Increases Bone Formation, Bone Mass, and Bone Strength in a Rat Model of Postmenopausal Osteoporosis , 2009, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[33]  Spencer J. Williams,et al.  'Click' cycloaddition catalysts: copper(I) and copper(II) tris(triazolylmethyl)amine complexes. , 2008, Chemical communications.

[34]  Karl Nicholas Kirschner,et al.  GLYCAM06: A generalizable biomolecular force field. Carbohydrates , 2008, J. Comput. Chem..

[35]  S. Janz,et al.  Attenuation of WNT signaling by DKK-1 and -2 regulates BMP2-induced osteoblast differentiation and expression of OPG, RANKL and M-CSF , 2007, Molecular Cancer.

[36]  Jeremy R. Greenwood,et al.  Epik: a software program for pKa prediction and protonation state generation for drug-like molecules , 2007, J. Comput. Aided Mol. Des..

[37]  David E. Shaw,et al.  PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results , 2006, J. Comput. Aided Mol. Des..

[38]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[39]  Hege S. Beard,et al.  Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. , 2004, Journal of medicinal chemistry.

[40]  Matthew P. Repasky,et al.  Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. , 2004, Journal of medicinal chemistry.

[41]  P. Kollman,et al.  Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. , 2001, Journal of the American Chemical Society.

[42]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[43]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998, J. Comput. Chem..

[44]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[45]  Cornelis Altona,et al.  Force field parameters for sulfates and sulfamates based on ab initio calculations: Extensions of AMBER and CHARMm fields , 1995, J. Comput. Chem..

[46]  T. Riemer,et al.  Sulfated hyaluronan derivatives reduce the proliferation rate of primary rat calvarial osteoblasts , 2009, Glycoconjugate Journal.