An Anatomically Constrained Model for Path Integration in the Bee Brain

[1]  Horst Mittelstaedt,et al.  Mechanismen der Orientierung ohne richtende Außenreize , 1973 .

[2]  Horst Mittelstaedt,et al.  Homing by Path Integration , 1982 .

[3]  Uwe Homberg,et al.  Interneurones of the central complex in the bee brain (Apis mellifera, L.) , 1985 .

[4]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[5]  M Heisenberg,et al.  Behavior‐dependent activity labeling in the central complex of Drosophila during controlled visual stimulation , 1994, The Journal of comparative neurology.

[6]  R. Hengstenberg,et al.  Estimation of self-motion by optic flow processing in single visual interneurons , 1996, Nature.

[7]  K. Zhang,et al.  Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  T. Godenschwege,et al.  Invertebrate Synapsins: A Single Gene Codes for Several Isoforms in Drosophila , 1996, The Journal of Neuroscience.

[9]  T. Collett,et al.  Local and global vectors in desert ant navigation , 1998, Nature.

[10]  Daniel D. Lee,et al.  Stability of the Memory of Eye Position in a Recurrent Network of Conductance-Based Model Neurons , 2000, Neuron.

[11]  John Hallam,et al.  Neural network approach to path integration for homing navigation , 2000 .

[12]  Uwe Homberg,et al.  Neurons of the Central Complex of the Locust Schistocerca gregaria are Sensitive to Polarized Light , 2002, The Journal of Neuroscience.

[13]  H. Sompolinsky,et al.  Temporal integration by calcium dynamics in a model neuron , 2003, Nature Neuroscience.

[14]  Eric J. Warrant,et al.  Nocturnal Vision and Landmark Orientation in a Tropical Halictid Bee , 2004, Current Biology.

[15]  M. Heisenberg,et al.  Neuronal architecture of the central complex in Drosophila melanogaster , 2004, Cell and Tissue Research.

[16]  Helmut Schwegler,et al.  Path integration — a network model , 1995, Biological Cybernetics.

[17]  U. Homberg,et al.  Crustacean cardioactive peptide-immunoreactive neurons innervating brain neuropils, retrocerebral complex and stomatogastric nervous system of the locust, Locusta migratoria , 1995, Cell and Tissue Research.

[18]  Thomas Labhart,et al.  Specialized photoreceptors at the dorsal rim of the honeybee's compound eye: Polarizational and angular sensitivity , 1980, Journal of comparative physiology.

[19]  Michael Scholz,et al.  New methods for the computer-assisted 3-D reconstruction of neurons from confocal image stacks , 2004, NeuroImage.

[20]  R. Vickerstaff,et al.  Published by The Company of Biologists 2005 doi:10.1242/jeb.01772 Evolving neural models of path integration , 2022 .

[21]  R. Wehner,et al.  Uncertainty about nest position influences systematic search strategies in desert ants , 2006, Journal of Experimental Biology.

[22]  U. Homberg,et al.  Neuropeptides in interneurons of the insect brain , 2006, Cell and Tissue Research.

[23]  Eric J. Warrant,et al.  Anatomical and physiological evidence for polarisation vision in the nocturnal bee Megalopta genalis , 2007, Journal of Comparative Physiology A.

[24]  Jan Wessnitzer,et al.  Evolving a Neural Model of Insect Path Integration , 2007, Adapt. Behav..

[25]  Stanley Heinze,et al.  Maplike Representation of Celestial E-Vector Orientations in the Brain of an Insect , 2007, Science.

[26]  Emily Baird Visual flight control in the honeybee , 2007 .

[27]  S. Ott Confocal microscopy in large insect brains: Zinc–formaldehyde fixation improves synapsin immunostaining and preservation of morphology in whole-mounts , 2008, Journal of Neuroscience Methods.

[28]  Stanley Heinze,et al.  Neuroarchitecture of the central complex of the desert locust: Intrinsic and columnar neurons , 2008, The Journal of comparative neurology.

[29]  Jan Wessnitzer,et al.  Path Integration Using a Model of e-Vector Orientation Coding in the Insect Brain: Reply to Vickerstaff and Di Paolo , 2008, Adapt. Behav..

[30]  R. Strauss,et al.  Analysis of a spatial orientation memory in Drosophila , 2008, Nature.

[31]  Philipp Berens,et al.  CircStat: AMATLABToolbox for Circular Statistics , 2009, Journal of Statistical Software.

[32]  Stanley Heinze,et al.  Linking the Input to the Output: New Sets of Neurons Complement the Polarization Vision Network in the Locust Central Complex , 2009, The Journal of Neuroscience.

[33]  Stanley Heinze,et al.  Transformation of Polarized Light Information in the Central Complex of the Locust , 2009, The Journal of Neuroscience.

[34]  U. Homberg,et al.  NO/cGMP signalling: L-citrulline and cGMP immunostaining in the central complex of the desert locust Schistocerca gregaria , 2009, Cell and Tissue Research.

[35]  A. J. Pollack,et al.  Neural Activity in the Central Complex of the Insect Brain Is Linked to Locomotor Changes , 2010, Current Biology.

[36]  J. Armstrong,et al.  Structure of the adult central complex in Drosophila: Organization of distinct neuronal subsets , 2010, The Journal of comparative neurology.

[37]  A. Borst,et al.  Fly motion vision. , 2010, Annual review of neuroscience.

[38]  Allen Cheung,et al.  Finding the Way with a Noisy Brain , 2010, PLoS Comput. Biol..

[39]  A. Cheung,et al.  Which coordinate system for modelling path integration? , 2010, Journal of theoretical biology.

[40]  S. Cardinal,et al.  The Antiquity and Evolutionary History of Social Behavior in Bees , 2011, PloS one.

[41]  L. Kahsai,et al.  Chemical neuroanatomy of the Drosophila central complex: Distribution of multiple neuropeptides in relation to neurotransmitters , 2011, The Journal of comparative neurology.

[42]  Stanley Heinze,et al.  Sun Compass Integration of Skylight Cues in Migratory Monarch Butterflies , 2011, Neuron.

[43]  Marie Dacke,et al.  Nocturnal insects use optic flow for flight control , 2011, Biology Letters.

[44]  Ulrike Träger,et al.  Polarization-Sensitive Descending Neurons in the Locust: Connecting the Brain to Thoracic Ganglia , 2011, The Journal of Neuroscience.

[45]  Stanley Heinze,et al.  Central neural coding of sky polarization in insects , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[46]  Michael Kunst,et al.  Neurochemical Architecture of the Central Complex Related to Its Function in the Control of Grasshopper Acoustic Communication , 2011, PloS one.

[47]  Martin Egelhaaf,et al.  Prototypical Components of Honeybee Homing Flight Behavior Depend on the Visual Appearance of Objects Surrounding the Goal , 2012, Front. Behav. Neurosci..

[48]  Ann-Shyn Chiang,et al.  A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain. , 2013, Cell reports.

[49]  Johannes D. Seelig,et al.  Feature detection and orientation tuning in the Drosophila central complex , 2013, Nature.

[50]  Stanley Heinze,et al.  Anatomical basis of sun compass navigation II: The neuronal composition of the central complex of the monarch butterfly , 2013, The Journal of comparative neurology.

[51]  Roland Strauss,et al.  A spiking network for spatial memory formation: Towards a fly-inspired ellipsoid body model , 2013, The 2013 International Joint Conference on Neural Networks (IJCNN).

[52]  U. Homberg,et al.  Organization and functional roles of the central complex in the insect brain. , 2014, Annual review of entomology.

[53]  Mandyam V. Srinivasan Going with the flow: a brief history of the study of the honeybee’s navigational ‘odometer’ , 2014, Journal of Comparative Physiology A.

[54]  M V Srinivasan,et al.  Honeybee navigation: critically examining the role of the polarization compass , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[55]  Roy E Ritzmann,et al.  Encoding wide-field motion and direction in the central complex of the cockroach Blaberus discoidalis , 2014, Journal of Experimental Biology.

[56]  Ryohei Kanzaki,et al.  Information flow through neural circuits for pheromone orientation , 2014, Nature Communications.

[57]  Peter T Weir,et al.  Central complex neurons exhibit behaviorally gated responses to visual motion in Drosophila. , 2014, Journal of neurophysiology.

[58]  Peter T Weir,et al.  Functional divisions for visual processing in the central brain of flying Drosophila , 2015, Proceedings of the National Academy of Sciences.

[59]  R. Ritzmann,et al.  Central-Complex Control of Movement in the Freely Walking Cockroach , 2015, Current Biology.

[60]  Uwe Homberg,et al.  Amplitude and dynamics of polarization-plane signaling in the central complex of the locust brain. , 2015, Journal of neurophysiology.

[61]  Florentin Wörgötter,et al.  A neural path integration mechanism for adaptive vector navigation in autonomous agents , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).

[62]  Johannes D. Seelig,et al.  Neural dynamics for landmark orientation and angular path integration , 2015, Nature.

[63]  Edvard I. Moser,et al.  Speed cells in the medial entorhinal cortex , 2015, Nature.

[64]  G. Rubin,et al.  Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits , 2014, The Journal of comparative neurology.

[65]  Eric J. Warrant,et al.  Neural coding underlying the cue preference for celestial orientation , 2015, Proceedings of the National Academy of Sciences.

[66]  Mandyam V. Srinivasan,et al.  Where paths meet and cross: navigation by path integration in the desert ant and the honeybee , 2015, Journal of Comparative Physiology A.

[67]  R. Kanzaki,et al.  The neurobiological basis of orientation in insects: insights from the silkmoth mating dance. , 2016, Current opinion in insect science.

[68]  Roy E. Ritzmann,et al.  Cellular Basis of Head Direction and Contextual Cues in the Insect Brain , 2016, Current Biology.

[69]  James J. Foster,et al.  A Snapshot-Based Mechanism for Celestial Orientation , 2016, Current Biology.

[70]  Benjamin L. de Bivort,et al.  Ring Attractor Dynamics Emerge from a Spiking Model of the Entire Protocerebral Bridge , 2016, bioRxiv.

[71]  Gaby Maimon,et al.  A neural circuit architecture for angular integration in Drosophila , 2017, Nature.

[72]  Stanley Heinze,et al.  Neural Coding: Bumps on the Move , 2017, Current Biology.

[73]  Poramate Manoonpong,et al.  A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents , 2017, Front. Neurorobot..

[74]  V. Jayaraman,et al.  Ring attractor dynamics in the Drosophila central brain , 2017, Science.

[75]  Johannes D. Seelig,et al.  Angular velocity integration in a fly heading circuit , 2017, eLife.