Online Learning of Parameterized Uncertain Dynamical Environments With Finite-Sample Guarantees
暂无分享,去创建一个
[1] Auke Jan Ijspeert,et al. Learning to Move in Modular Robots using Central Pattern Generators and Online Optimization , 2008, Int. J. Robotics Res..
[2] Sonia Martínez,et al. Dynamic Evolution of Distributional Ambiguity Sets and Precision Tradeoffs in Data Assimilation , 2019, 2019 18th European Control Conference (ECC).
[3] Jing Lei. Convergence and concentration of empirical measures under Wasserstein distance in unbounded functional spaces , 2018, Bernoulli.
[4] Samet Oymak,et al. Non-asymptotic Identification of LTI Systems from a Single Trajectory , 2018, 2019 American Control Conference (ACC).
[5] Carlo Novara,et al. Unified Set Membership theory for identification, prediction and filtering of nonlinear systems , 2011, Autom..
[6] V. Verdult,et al. Filtering and System Identification: A Least Squares Approach , 2007 .
[7] Jonathan Niles-Weed,et al. Estimation of Wasserstein distances in the Spiked Transport Model , 2019, Bernoulli.
[8] Sonia Martínez,et al. Online Learning of Parameterized Uncertain Dynamical Environments with Finite-sample Guarantees , 2021, 2021 American Control Conference (ACC).
[9] Alessandro Chiuso,et al. System Identification: A Machine Learning Perspective , 2019, Annu. Rev. Control. Robotics Auton. Syst..
[10] Giuseppe C. Calafiore,et al. Nonlinear system identification in Sobolev spaces , 2019, Int. J. Control.
[11] O. Papaspiliopoulos. High-Dimensional Probability: An Introduction with Applications in Data Science , 2020 .
[12] A. Guillin,et al. On the rate of convergence in Wasserstein distance of the empirical measure , 2013, 1312.2128.
[13] George J. Pappas,et al. Finite Sample Analysis of Stochastic System Identification , 2019, 2019 IEEE 58th Conference on Decision and Control (CDC).
[14] Dimitris Boskos,et al. Data-Driven Ambiguity Sets With Probabilistic Guarantees for Dynamic Processes , 2019, IEEE Transactions on Automatic Control.
[15] Alexander Rakhlin,et al. Near optimal finite time identification of arbitrary linear dynamical systems , 2018, ICML.
[16] Petre Stoica,et al. Decentralized Control , 2018, The Control Systems Handbook.
[17] Roman Vershynin,et al. High-Dimensional Probability , 2018 .
[18] Steven M. LaValle,et al. Planning algorithms , 2006 .
[19] Biao Huang,et al. System Identification , 2000, Control Theory for Physicists.
[20] Nikolai Matni,et al. Learning Sparse Dynamical Systems from a Single Sample Trajectory , 2019, 2019 IEEE 58th Conference on Decision and Control (CDC).
[21] Michael C. Yip,et al. Motion Planning Networks: Bridging the Gap Between Learning-Based and Classical Motion Planners , 2019, IEEE Transactions on Robotics.