Multifaceted luminance gain control beyond photoreceptors in Drosophila

[1]  Sebastian Molina-Obando,et al.  First-order visual interneurons distribute distinct contrast and luminance information across ON and OFF pathways to achieve stable behavior , 2021, bioRxiv.

[2]  Marion Silies,et al.  The physiological basis for contrast opponency in motion computation in Drosophila , 2021, Nature Communications.

[3]  Fatima Abbas,et al.  Transduction and Adaptation Mechanisms in the Cilium or Microvilli of Photoreceptors and Olfactory Receptors From Insects to Humans , 2021, Frontiers in Cellular Neuroscience.

[4]  Michael S. Drews,et al.  Dynamic Signal Compression for Robust Motion Vision in Flies , 2020, Current Biology.

[5]  Burak Gür,et al.  Luminance Information Is Required for the Accurate Estimation of Contrast in Rapidly Changing Visual Contexts , 2020, Current Biology.

[6]  Damon A. Clark,et al.  Heterogeneous Temporal Contrast Adaptation in Drosophila Direction-Selective Circuits , 2020, Current Biology.

[7]  Philipp Berens,et al.  Understanding the retinal basis of vision across species , 2019, Nature Reviews Neuroscience.

[8]  A. Fiala,et al.  Slow presynaptic mechanisms that mediate adaptation in the olfactory pathway of Drosophila , 2019, eLife.

[9]  G. Schwartz,et al.  The dynamic receptive fields of retinal ganglion cells , 2018, Progress in Retinal and Eye Research.

[10]  A. Mamiya,et al.  Neural Coding of Leg Proprioception in Drosophila , 2018, Neuron.

[11]  M. Murthy,et al.  Fast intensity adaptation enhances the encoding of sound in Drosophila , 2017, bioRxiv.

[12]  E. Milner,et al.  A Population Representation of Absolute Light Intensity in the Mammalian Retina , 2017, Cell.

[13]  Thierry Emonet,et al.  Olfactory receptor neurons use gain control and complementary kinetics to encode intermittent odorant stimuli , 2017, eLife.

[14]  M. Bethge,et al.  Inhibition decorrelates visual feature representations in the inner retina , 2017, Nature.

[15]  D. O’Carroll,et al.  Neural Summation in the Hawkmoth Visual System Extends the Limits of Vision in Dim Light , 2016, Current Biology.

[16]  Tomomi Ichinose,et al.  Differential signalling and glutamate receptor compositions in the OFF bipolar cell types in the mouse retina , 2016, The Journal of physiology.

[17]  Yvette E. Fisher,et al.  Orientation Selectivity Sharpens Motion Detection in Drosophila , 2015, Neuron.

[18]  Aljoscha Nern,et al.  Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system , 2015, Proceedings of the National Academy of Sciences.

[19]  Rava Azeredo da Silveira,et al.  Dynamical Adaptation in Photoreceptors , 2013, PLoS Comput. Biol..

[20]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[21]  Damon A. Clark,et al.  Modular Use of Peripheral Input Channels Tunes Motion-Detecting Circuitry , 2013, Neuron.

[22]  John R. Carlson,et al.  Intensity Invariant Dynamics and Odor-Specific Latencies in Olfactory Receptor Neuron Response , 2013, The Journal of Neuroscience.

[23]  D. Hadjieconomou,et al.  Localized Netrins Act as Positional Cues to Control Layer-Specific Targeting of Photoreceptor Axons in Drosophila , 2012, Neuron.

[24]  Nicholas W. Oesch,et al.  Ribbon synapses compute temporal contrast and encode luminance in retinal rod bipolar cells , 2011, Nature Neuroscience.

[25]  Damon A. Clark,et al.  Defining the Computational Structure of the Motion Detector in Drosophila , 2011, Neuron.

[26]  Mikko Juusola,et al.  Compound eyes and retinal information processing in miniature dipteran species match their specific ecological demands , 2011, Proceedings of the National Academy of Sciences.

[27]  Michael B. Reiser,et al.  Corrigendum: Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior , 2011, Nature Methods.

[28]  Erik Reinhard,et al.  Statistical regularities in low and high dynamic range images , 2010, APGV '10.

[29]  Fred Rieke,et al.  Review the Challenges Natural Images Pose for Visual Adaptation , 2022 .

[30]  A. Fairhall,et al.  Timescales of Inference in Visual Adaptation , 2009, Neuron.

[31]  Hidehiko K. Inagaki,et al.  The neural basis of Drosophila gravity-sensing and hearing , 2009, Nature.

[32]  Gonzalo G. de Polavieja,et al.  Network Adaptation Improves Temporal Representation of Naturalistic Stimuli in Drosophila Eye: II Mechanisms , 2009, PloS one.

[33]  A. Fairhall,et al.  Fractional differentiation by neocortical pyramidal neurons , 2008, Nature Neuroscience.

[34]  Jan Benda,et al.  Spike-frequency adaptation generates intensity invariance in a primary auditory interneuron , 2008, Journal of Computational Neuroscience.

[35]  Michael H. Dickinson,et al.  A modular display system for insect behavioral neuroscience , 2008, Journal of Neuroscience Methods.

[36]  N. Strausfeld,et al.  Dissection of the Peripheral Motion Channel in the Visual System of Drosophila melanogaster , 2007, Neuron.

[37]  F. Rieke,et al.  Light adaptation in cone vision involves switching between receptor and post-receptor sites , 2007, Nature.

[38]  Robert A. Frazor,et al.  Independence of luminance and contrast in natural scenes and in the early visual system , 2005, Nature Neuroscience.

[39]  Marten Postma,et al.  Mechanisms of Light Adaptation in Drosophila Photoreceptors , 2005, Current Biology.

[40]  I. Nelken,et al.  Multiple Time Scales of Adaptation in Auditory Cortex Neurons , 2004, The Journal of Neuroscience.

[41]  Barry B. Lee,et al.  Dynamics of sensitivity regulation in primate outer retina: the horizontal cell network. , 2003, Journal of vision.

[42]  V. Arshavsky,et al.  Two Temporal Phases of Light Adaptation in Retinal Rods , 2002, The Journal of general physiology.

[43]  R. Masland The fundamental plan of the retina , 2001, Nature Neuroscience.

[44]  Adrienne L. Fairhall,et al.  Efficiency and ambiguity in an adaptive neural code , 2001, Nature.

[45]  T. Kitamoto Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. , 2001, Journal of neurobiology.

[46]  Kerry J. Kim,et al.  Temporal Contrast Adaptation in the Input and Output Signals of Salamander Retinal Ganglion Cells , 2001, The Journal of Neuroscience.

[47]  G. Awatramani,et al.  Origin of Transient and Sustained Responses in Ganglion Cells of the Retina , 2000, The Journal of Neuroscience.

[48]  T. Lamb,et al.  Light adaptation and dark adaptation of human rod photoreceptors measured from the a‐wave of the electroretinogram , 1999, The Journal of physiology.

[49]  M. Rudd,et al.  Evidence for a noise gain control mechanism in human vision , 1998, Vision Research.

[50]  Michael J. Berry,et al.  Adaptation of retinal processing to image contrast and spatial scale , 1997, Nature.

[51]  M. Juusola Linear and non-linear contrast coding in light-adapted blowfly photoreceptors , 1993, Journal of Comparative Physiology A.

[52]  R. Hardie,et al.  Three classes of potassium channels in large monopolar cells of the blowfly Calliphora vicina , 1990, Journal of Comparative Physiology A.

[53]  D. Baylor,et al.  Visual transduction in cones of the monkey Macaca fascicularis. , 1990, The Journal of physiology.

[54]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[55]  S. Laughlin The role of sensory adaptation in the retina. , 1989, The Journal of experimental biology.

[56]  S B Laughlin,et al.  Synaptic limitations to contrast coding in the retina of the blowfly Calliphora , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[57]  J. Yellott,et al.  Intensity-dependent spatial summation. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[58]  J Gottesman,et al.  Symmetry and constancy in the perception of negative and positive luminance contrast. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[59]  Edward H. Adelson,et al.  Saturation and adaptation in the rod system , 1982, Vision Research.

[60]  S B Laughlin,et al.  Single photon signals in fly photoreceptors and first order interneurones at behavioral threshold. , 1981, The Journal of physiology.

[61]  Erich Buchner,et al.  Visual movement detection under light- and dark-adaptation in the fly,Musca domestica , 1979, Journal of comparative physiology.

[62]  Roger C. Hardie,et al.  Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly , 1978, Journal of comparative physiology.

[63]  F. Werblin,et al.  The response properties of the steady antagonistic surround in the mudpuppy retina. , 1978, The Journal of physiology.

[64]  A. Hodgkin,et al.  Changes in time scale and sensitivity in turtle photoreceptors , 1974, The Journal of physiology.

[65]  F. Werblin Control of Retinal Sensitivity II . Lateral Interactions at the Outer Plexiform Layer , 2022 .

[66]  John E. Dowling,et al.  Adaptation in Skate Photoreceptors , 1972, The Journal of general physiology.

[67]  J. Dowling,et al.  Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. , 1969, Journal of neurophysiology.

[68]  K. Naka,et al.  S‐potentials from luminosity units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.

[69]  Roger C. Hardie,et al.  Light Adaptation in Drosophila Photoreceptors: I. Response Dynamics and Signaling Efficiency at 25°C , 2001 .

[70]  J. Anthony Movshon,et al.  Linearity and gain control in V1 simple cells , 1999 .

[71]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[72]  R. Normann,et al.  The effects of background illumination on the photoresponses of red and green cones. , 1979, The Journal of physiology.

[73]  F. Werblin Control of Retinal Sensitivity II. Lateral Interactions at the Outer Plexiform Layer , 1974 .

[74]  F. Werblin,et al.  Control of Retinal Sensitivity: I. Light and Dark Adaptation of Vertebrate Rods and Cones , 1974 .

[75]  W. Stiles,et al.  Saturation of the Rod Mechanism of the Retina at High Levels of Stimulation , 1954 .

[76]  HighWire Press,et al.  Philosophical transactions of the Royal Society of London. Series B, Containing papers of a biological character , 1934 .