Enhanced dielectric and electrical performance of phosphonic acid-modified tantalum (Ta)-doped potassium sodium niobate (KNaNbO3)-P(VDF-HFP) composites

[1]  E. M. Abdelrazek,et al.  Enhanced the structural, optical, electrical and magnetic properties of PEO/CMC blend filled with cupper nanoparticles for energy storage and magneto-optical devices , 2022, Optical Materials.

[2]  Minzheng Yang,et al.  High-Energy-Density and High Efficiency Polymer Dielectrics for High Temperature Electrostatic Energy Storage: A Review. , 2022, Small.

[3]  K. Sharma,et al.  Boosting of structural, optical, and dielectric properties of PVA/CMC polymer blend using SrTiO3 perovskite nanoparticles for advanced optoelectronic applications , 2022, Optical Materials.

[4]  Fancheng Meng,et al.  Enhanced energy storage density in poly(vinylidene fluoride-hexafluoropropylene) nanocomposites by filling with core-shell structured BaTiO3@MgO nanoparticals , 2022, Journal of Energy Storage.

[5]  S. Son,et al.  Effects of flexoelectric and piezoelectric properties on the impact-driven ignition sensitivity of P(VDF-TrFE)/nAl films , 2022, Combustion and Flame.

[6]  S. Jia,et al.  Synchronously improved thermal conductivity and dielectric constant for epoxy composites by introducing functionalized silicon carbide nanoparticles and boron nitride microspheres. , 2022, Journal of colloid and interface science.

[7]  Sunena Parida,et al.  Studies on Structural, Dielectric, and Electrical Properties of the PMMA-BNT Ceramics Polymer Composites , 2022, Polymer Science, Series B.

[8]  Dong Liu,et al.  Bilayer dielectric composites with positive-ε and negative-ε layers archieving high dielectric constant and low dielectric loss , 2022, Composites Part A: Applied Science and Manufacturing.

[9]  R. Choudhary,et al.  Structural and electrical characteristics of double perovskite: Sr2FeMoO6 , 2022, Materials Science and Engineering: B.

[10]  Guangning Wu,et al.  Interfacial reinforcement of composites by the electrostatic self-assembly of graphene oxide and NH3 plasma-treated carbon fiber , 2022, Applied Surface Science.

[11]  G. Weng,et al.  Segregated carbon nanotube networks in CNT-polymer nanocomposites for higher electrical conductivity and dielectric permittivity, and lower percolation threshold , 2022, International Journal of Engineering Science.

[12]  C. Ruttanapun,et al.  Improved dielectric properties of PVDF polymer composites filled with Ag nanomaterial deposited reduced graphene oxide (rGO) hybrid particles , 2022, Materials Research Bulletin.

[13]  P. Thongbai,et al.  Continually enhanced dielectric constant of Poly(vinylidene fluoride) with BaTiO3@Poly(vinylidene fluoride) core-shell nanostructure filling , 2021, Ceramics International.

[14]  Hyun-gi Yoon,et al.  Review on three-dimensional ceramic filler networking composites for thermal conductive applications , 2021, Journal of Non-Crystalline Solids.

[15]  P. K. Deheri,et al.  Low frequency dielectric response mechanism of bamboo charcoal , 2021, Fullerenes, Nanotubes and Carbon Nanostructures.

[16]  Maolin Bo,et al.  Well-coordinated dielectric properties in polymer composites bearing hybrid ceramic via interfacial effect between Ti2C MXene particles and large-aspect-ratio ZrO2 fibers , 2021, Colloids and Surfaces A: Physicochemical and Engineering Aspects.

[17]  Lei Zhu,et al.  Challenges and Opportunities of Polymer Nanodielectrics for Capacitive Energy Storage. , 2021, ACS applied materials & interfaces.

[18]  Jiang Shao,et al.  Estimating the dielectric constant of BaTiO3–polymer nanocomposites by a developed Paletto model , 2021, RSC advances.

[19]  Y. Azizian-Kalandaragh,et al.  On the frequency-dependent complex-dielectric, complex-electric modulus and conductivity in Au/(NiS:PVP)/n-Si structures , 2021, Journal of Materials Science: Materials in Electronics.

[20]  C. Carbone,et al.  Influence of Matrix and Surfactant on Piezoelectric and Dielectric Properties of Screen-Printed BaTiO3/PVDF Composites , 2021, Polymers.

[21]  A. Tataroğlu,et al.  Frequency dependence of the dielectric properties of Au/(NG:PVP)/n-Si structures , 2021, Journal of Materials Science: Materials in Electronics.

[22]  R. Choudhary,et al.  Studies of electrical, magnetic and leakage-current characteristics of double perovskite: Dy2CoMnO6 , 2021 .

[23]  M. A. Mohamed,et al.  Dielectric relaxation and small polaron hopping transport in sol-gel-derived NiCr2O4 spinel chromite , 2021 .

[24]  Kui Chen,et al.  Enhanced temperature stability in high piezoelectric performance of (K, Na)NbO3-based lead-free ceramics trough co-doped antimony and tantalum , 2021 .

[25]  Lijie Li,et al.  Formation mechanisms and electrical properties of perovskite mesocrystals , 2021 .

[26]  S. Bhattacharya AC conductivity behaviour and charge carrier concentrations of some vanadate glassy system , 2020 .

[27]  R. Choudhary,et al.  Study of Effect of Y substitution on structural, dielectric, impedance and magnetic properties of Bismuth Ferrite , 2020, Journal of Materials Science: Materials in Electronics.

[28]  Khosro Mabhouti,et al.  Comparative study on dielectric and structural properties of undoped, Mn-doped, and Ni-doped ZnO nanoparticles by impedance spectroscopy analysis , 2019, Journal of Materials Science: Materials in Electronics.

[29]  G. Michon,et al.  Electrical behavior of a graphene/PEKK and carbon black/PEKK nanocomposites in the vicinity of the percolation threshold , 2019, Journal of Non-Crystalline Solids.

[30]  Wei Wang,et al.  Progress in Triboelectric Materials: Toward High Performance and Widespread Applications , 2019, Advanced Functional Materials.

[31]  R. Choudhary,et al.  Fabrication and electrical characterization of (Bi0.49Na0.49Ba0.02)TiO3-PVDF thin film composites , 2018, Journal of Polymer Research.

[32]  Jun Su,et al.  Recent development on modification of synthesized barium titanate (BaTiO3) and polymer/BaTiO3 dielectric composites , 2018, Journal of Materials Science: Materials in Electronics.

[33]  R. N. Mahaling,et al.  Enhanced dielectric and ferroelectric properties of surface hydroxylated Na0.5Bi0.5TiO3 (NBT)-poly(vinylidene fluoride) (PVDF) composites , 2018, Journal of Advanced Dielectrics.

[34]  Wen‐Zhong Lu,et al.  High Permittivity Nanocomposites Embedded with Ag/TiO2 Core–Shell Nanoparticles Modified by Phosphonic Acid , 2018, Polymers.

[35]  Liang Zhang,et al.  Surface modified BaTiO3 nanoparticles by titanate coupling agent induce significantly enhanced breakdown strength and larger energy density in PVDF nanocomposite , 2018 .

[36]  Yu Bai,et al.  Fluorocarboxylic acid-modified barium titanate/poly(vinylidene fluoride) composite with significantly enhanced breakdown strength and high energy density , 2015 .

[37]  Longtu Li,et al.  Synthesis, characterization and dielectric properties of surface functionalized ferroelectric ceramic/epoxy resin composites with high dielectric permittivity , 2015 .

[38]  Z. Dang,et al.  Preparation and dielectric properties of core-shell structured Ag@polydopamine/poly(vinylidene fluoride) composites , 2015 .

[39]  S. Pal,et al.  Frequency-dependent dielectric permittivity and electric modulus studies and an empirical scaling in (100−x)BaTiO3/(x)La0.7Ca0.3MnO3 composites , 2014, Applied Physics A.

[40]  Hong Wang,et al.  Enhanced electric breakdown strength and high energy density of barium titanate filled polymer nanocomposites , 2013 .

[41]  Jintu Fan,et al.  Novel syndiotactic polystyrene/BaTiO3-graphite nanosheets three-phase composites with high dielectric permittivity , 2013 .

[42]  Hong Wang,et al.  Nanocomposites of Surface-Modified BaTiO3 Nanoparticles Filled Ferroelectric Polymer with Enhanced Energy Density , 2013 .

[43]  Robert C. Wolpert,et al.  A Review of the , 1985 .