Energy transfer between gravitational waves and quantum matter

We study the interaction between gravitational waves and quantum matter such as Bose-Einstein condensates, super-fluid Helium, or ultra-cold solids, explicitly taking into account the changes of the trapping potential induced by the gravitational wave. As a possible observable, we consider the change of energy due to the gravitational wave, for which we derive rigorous bounds in terms of kinetic energy and particle number. Finally, we discuss implications for possible experimental tests.

[1]  R. D’Agnolo,et al.  Electromagnetic cavities as mechanical bars for gravitational waves , 2023, Physical Review D.

[2]  G. Kirchmair,et al.  Kerr Enhanced Backaction Cooling in Magnetomechanics. , 2022, Physical review letters.

[3]  I. Fuentes,et al.  Quantum frequency interferometry: With applications ranging from gravitational wave detection to dark matter searches , 2021, AVS Quantum Science.

[4]  U. R. Fischer,et al.  Quantum metrology with ultracold chemical reactions , 2022, 2208.06380.

[5]  A. Watcharangkool,et al.  The imprint of gravitational wave in Hydrogen spectrum , 2022, 2206.06590.

[6]  Anthony J. Brady,et al.  Searches for New Particles, Dark Matter, and Gravitational Waves with SRF Cavities , 2022, 2203.12714.

[7]  R. D’Agnolo,et al.  Detecting high-frequency gravitational waves with microwave cavities , 2021, Physical Review D.

[8]  D. Braun,et al.  Perspectives of measuring gravitational effects of laser light and particle beams , 2021, New Journal of Physics.

[9]  R. Mann,et al.  Detection of gravitational waves using parametric resonance in Bose–Einstein condensates , 2021, Classical and Quantum Gravity.

[10]  T. J. Clark,et al.  Prototype superfluid gravitational wave detector , 2021, Physical Review D.

[11]  C. Corda,et al.  A new experiment for gravitational wave detection , 2021, Canadian Journal of Physics.

[12]  J. R. Palamos,et al.  Approaching the motional ground state of a 10-kg object , 2021, Science.

[13]  David Edward Bruschi,et al.  Thermodynamics of relativistic quantum fields confined in cavities , 2016, Physics Letters A.

[14]  R. Schutzhold Reply to comment on"Interaction of a BEC with a gravitational wave" , 2019, 1901.08999.

[15]  R. Mann,et al.  Bose-Einstein condensates as gravitational wave detectors , 2018, Journal of Cosmology and Astroparticle Physics.

[16]  I. Fuentes,et al.  Comment on "Interaction of a Bose-Einstein condensate with a gravitational wave" , 2018, 1811.10306.

[17]  R. Schutzhold Interaction of a Bose-Einstein condensate with a gravitational wave , 2018, 1807.07046.

[18]  I. Fuentes,et al.  Dynamical response of Bose–Einstein condensates to oscillating gravitational fields , 2018, New Journal of Physics.

[19]  M. Zhan,et al.  Atomic Interferometric Gravitational-wave Space Observatory (AIGSO) , 2017, 1711.03690.

[20]  B. Varcoe,et al.  Semiclassical approach to atomic decoherence by gravitational waves , 2017, 1706.01287.

[21]  K. Schwab,et al.  Detecting continuous gravitational waves with superfluid 4He , 2016, 1606.04980.

[22]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[23]  David Edward Bruschi,et al.  Phonon creation by gravitational waves , 2014, 1402.7009.

[24]  Mingsheng Zhan,et al.  Gravitational-wave detection with matter-wave interferometers based on standing light waves , 2011, 1103.4897.

[25]  Matt Visser,et al.  Acoustic geometry for general relativistic barotropic irrotational fluid flow , 2010, 1001.1310.

[26]  Stefano Liberati,et al.  Relativistic Bose–Einstein condensates: a new system for analogue models of gravity , 2010, 1001.1044.

[27]  C. Lämmerzahl,et al.  Rovibrational quantum interferometers and gravitational waves , 2008 .

[28]  R. Schützhold Detection scheme for acoustic quantum radiation in Bose-Einstein condensates. , 2006, Physical review letters.

[29]  Albert Einstein,et al.  Näherungsweise Integration der Feldgleichungen der Gravitation , 2006 .

[30]  A. Roura,et al.  Gravitational wave detectors based on matter wave interferometers (MIGO) are no better than laser interferometers (LIGO) , 2004, gr-qc/0409002.

[31]  R. Sturani,et al.  Sensitivity of a small matter-wave interferometer to gravitational waves , 2004, gr-qc/0407039.

[32]  J. Camp,et al.  GRAVITATIONAL WAVE ASTRONOMY , 2004 .

[33]  R. Chiao,et al.  Differing Calculations of the Response of Matter-wave Interferometers to Gravitational Waves , 2004, gr-qc/0406096.

[34]  R. Chiao,et al.  Towards MIGO, the matter-wave interferometric gravitational-wave observatory, and the intersection of quantum mechanics with general relativity , 2003, gr-qc/0312096.

[35]  F. Pinto Rydberg atoms as gravitational-wave antennas , 1995 .

[36]  U. R. Fischer Transition probabilities for a Rydberg atom in the field of a gravitational wave , 1994 .

[37]  Pinto,et al.  Rydberg atoms in curved space-time. , 1993, Physical review letters.

[38]  L. Parker,et al.  Gravitational perturbation of the hydrogen spectrum , 1982 .

[39]  L. Parker,et al.  One-electron atom as a probe of space-time curvature , 1980 .

[40]  L. Parker,et al.  One-Electron Atom in Curved Space-Time , 1980 .

[41]  L. Stodolsky Matter and light wave interferometry in gravitational fields , 1979 .

[42]  W. Unruh QUANTUM NONDEMOLITION AND GRAVITY WAVE DETECTION , 1979 .

[43]  J. Weber Evidence for discovery of gravitational radiation , 1969 .

[44]  Y. Zel’dovich,et al.  Reception of Gravitational Radiation of Extraterrestrial Origin , 1969 .

[45]  J. Weber,et al.  Gravitational-Wave-Detector Events , 1968 .

[46]  V. Braginskii Classical and Quantum Restrictions on the Detection of Weak Disturbances of a Macroscopic Oscillator , 1968 .

[47]  W. Bonnor,et al.  Gravitational Radiation , 1958, Nature.