Strong convergence of path for continuous pseudo-contractive mappings

The purpose of this paper is to study the convergence of a path that begins at the unique fixed point of a strongly pseudo-contractive operator defined on a closed and convex subset of a reflexive Banach space and converges to a fixed point of a pseudo-contractive mapping. Primarily, it is proven that a convex combination of these two operators is indeed strongly pseudo-contractive under the weakly inward condition. This fact generalizes a result of Barbu for accretive operators.

[1]  V. Barbu,et al.  Convexity and optimization in banach spaces , 1972 .

[2]  Hong-Kun Xu Iterative Algorithms for Nonlinear Operators , 2002 .

[3]  M. Day Reflexive Banach spaces not isomorphic to uniformly convex spaces , 1941 .

[4]  Václav Zizler,et al.  On some rotundity and smoothness properties of Banach spaces , 1971 .

[5]  Rudong Chen,et al.  An approximation method for strictly pseudocontractive mappings , 2006 .

[6]  C. H. Morales Convergence of paths for pseudocontractive mappings in Banach spaces , 2000 .

[7]  C. Morales,et al.  Convergence of paths for pseudo-contractive mappings in Banach spaces , 2000 .

[8]  M. Crandall Differential equations on convex sets , 1970 .

[9]  Mapping theorems for local expansions in metric and Banach spaces , 1979 .

[10]  F. Browder Nonlinear operators and nonlinear equations of evolution in Banach spaces , 1976 .

[11]  V. Lakshmikantham,et al.  Differential Equations on Closed Subsets of a Banach Space , 1976 .

[12]  Klaus Deimling,et al.  Zeros of accretive operators , 1974 .

[13]  A fixed point theorem for local pseudo-contractions in uniformly convex spaces , 1979 .

[14]  A. Moudafi Viscosity Approximation Methods for Fixed-Points Problems , 2000 .

[15]  H. Zegeye,et al.  Approximate fixed point sequences and convergence theorems for Lipschitz pseudocontractive maps , 2003 .

[16]  Felix E. Browder,et al.  Nonlinear mappings of nonexpansive and accretive type in Banach spaces , 1967 .

[17]  Tosio Kato,et al.  Nonlinear semigroups and evolution equations , 1967 .

[18]  Viorel Barbu,et al.  Differential equations in Banach spaces , 1976 .

[19]  C. Morales On the fixed-point theory for local $k$-pseudocontractions , 1981 .

[20]  S. Dietze Barbu, V./Precupanu, Th., Convexity and Optimization in Banach Spaces. Bucuresti. Editura Academiei. Alphen an de Rijn. Sijthoff & Noordhoff Intern. Publ. 1978. XI, 316 S., Dfl. 60.00. $ 28.00 , 1979 .

[21]  Hong-Kun Xu VISCOSITY APPROXIMATION METHODS FOR NONEXPANSIVE MAPPINGS , 2004 .