ROMO1 is a constituent of the human presequence translocase required for YME1L protease import

The mitochondrial presequence translocation machinery (TIM23 complex) is conserved between the yeast Saccharomyces cerevisiae and humans; however, functional characterization has been mainly performed in yeast. Here, we define the constituents of the human TIM23 complex using mass spectrometry and identified ROMO1 as a new translocase constituent with an exceptionally short half-life. Analyses of a ROMO1 knockout cell line revealed aberrant inner membrane structure and altered processing of the GTPase OPA1. We show that in the absence of ROMO1, mitochondria lose the inner membrane YME1L protease, which participates in OPA1 processing and ROMO1 turnover. While ROMO1 is dispensable for general protein import along the presequence pathway, we show that it participates in the dynamics of TIM21 during respiratory chain biogenesis and is specifically required for import of YME1L. This selective import defect can be linked to charge distribution in the unusually long targeting sequence of YME1L. Our analyses establish an unexpected link between mitochondrial protein import and inner membrane protein quality control.

[1]  Abdullahi Umar Ibrahim,et al.  Genome Engineering Using the CRISPR Cas9 System , 2019 .

[2]  P. Rehling,et al.  Motor recruitment to the TIM23 channel’s lateral gate restricts polypeptide release into the inner membrane , 2018, Nature Communications.

[3]  S. Hwang,et al.  Romo1 is a mitochondrial nonselective cation channel with viroporin-like characteristics , 2018, The Journal of cell biology.

[4]  T. Langer,et al.  PARL partitions the lipid transfer protein STARD7 between the cytosol and mitochondria , 2018, The EMBO journal.

[5]  D. Stojanovski,et al.  Mitochondrial protein transport in health and disease. , 2017, Seminars in cell & developmental biology.

[6]  S. Mathivanan,et al.  Sengers Syndrome-Associated Mitochondrial Acylglycerol Kinase Is a Subunit of the Human TIM22 Protein Import Complex. , 2017, Molecular cell.

[7]  Marcus Krüger,et al.  Acylglycerol Kinase Mutated in Sengers Syndrome Is a Subunit of the TIM22 Protein Translocase in Mitochondria. , 2017, Molecular cell.

[8]  N. Pfanner,et al.  Mitochondrial Machineries for Protein Import and Assembly. , 2017, Annual review of biochemistry.

[9]  S. Glynn,et al.  Engineered AAA+ proteases reveal principles of proteolysis at the mitochondrial inner membrane , 2016, Nature Communications.

[10]  P. Doležal,et al.  Evolution of the Tim17 protein family , 2016, Biology Direct.

[11]  T. Wai,et al.  The membrane scaffold SLP2 anchors a proteolytic hub in mitochondria containing PARL and the i‐AAA protease YME1L , 2016, EMBO reports.

[12]  Ulrich Brandt,et al.  The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria. , 2016, Molecular cell.

[13]  T. Wienker,et al.  Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation , 2016, eLife.

[14]  T. Langer,et al.  OPA1 processing in cell death and disease – the long and short of it , 2016, Journal of Cell Science.

[15]  R. Wanders,et al.  Cardiac‐specific succinate dehydrogenase deficiency in Barth syndrome , 2015, EMBO molecular medicine.

[16]  P. Bénit,et al.  Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice , 2015, Science.

[17]  S. Jakobs,et al.  MITRAC7 Acts as a COX1-Specific Chaperone and Reveals a Checkpoint during Cytochrome c Oxidase Assembly. , 2015, Cell reports.

[18]  A. Lyakhovich,et al.  ROMO1 regulates RedOx states and serves as an inducer of NF-κB-driven EMT factors in Fanconi anemia. , 2015, Cancer letters.

[19]  P. Rehling,et al.  Unlocking the presequence import pathway. , 2015, Trends in cell biology.

[20]  G. Su,et al.  Association of Romo1 Gene Genetic Polymorphisms with Risk of Gastric Cancer in Northwestern Chinese Population , 2015, Pathology & Oncology Research.

[21]  N. Pfanner,et al.  Mgr2 functions as lateral gatekeeper for preprotein sorting in the mitochondrial inner membrane. , 2014, Molecular cell.

[22]  A. Chacińska,et al.  Mitochondrial protein translocases for survival and wellbeing , 2014, FEBS letters.

[23]  P. Rehling,et al.  Remodelling of the active presequence translocase drives motor-dependent mitochondrial protein translocation , 2014, Nature Communications.

[24]  E. Rugarli,et al.  The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission , 2014, The Journal of cell biology.

[25]  N. Pfanner,et al.  The protein import machinery of mitochondria-a regulatory hub in metabolism, stress, and disease. , 2014, Cell metabolism.

[26]  H. McBride,et al.  ROMO1 Is an Essential Redox-Dependent Regulator of Mitochondrial Dynamics , 2014, Science Signaling.

[27]  S. Carr,et al.  EMRE Is an Essential Component of the Mitochondrial Calcium Uniporter Complex , 2013, Science.

[28]  Joseph C. Genereux,et al.  Stress-regulated translational attenuation adapts mitochondrial protein import through Tim17A degradation. , 2013, Cell metabolism.

[29]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[30]  S. Cho,et al.  Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells. , 2013, Biochemical and biophysical research communications.

[31]  T. Wai,et al.  TRIAP1/PRELI complexes prevent apoptosis by mediating intramitochondrial transport of phosphatidic acid. , 2013, Cell metabolism.

[32]  Jan Dudek,et al.  Mitochondrial protein import: common principles and physiological networks. , 2013, Biochimica et biophysica acta.

[33]  E. Shoubridge,et al.  MITRAC Links Mitochondrial Protein Translocation to Respiratory-Chain Assembly and Translational Regulation , 2012, Cell.

[34]  Jürgen Cox,et al.  1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data , 2012, BMC Bioinformatics.

[35]  N. Pfanner,et al.  Mgr2 promotes coupling of the mitochondrial presequence translocase to partner complexes , 2012, The Journal of cell biology.

[36]  J. Nunnari,et al.  Mitochondria: In Sickness and in Health , 2012, Cell.

[37]  J. Zeman,et al.  YME1L controls the accumulation of respiratory chain subunits and is required for apoptotic resistance, cristae morphogenesis, and cell proliferation , 2012, Molecular biology of the cell.

[38]  P. Rehling,et al.  Tim50’s presequence receptor domain is essential for signal driven transport across the TIM23 complex , 2011, The Journal of cell biology.

[39]  Kee-Ho Lee,et al.  Romo1 is a negative-feedback regulator of Myc , 2011, Journal of Cell Science.

[40]  Benedikt Westermann,et al.  Mitochondrial fusion and fission in cell life and death , 2010, Nature Reviews Molecular Cell Biology.

[41]  D. Mokranjac,et al.  The many faces of the mitochondrial TIM23 complex. , 2010, Biochimica et biophysica acta.

[42]  E. Rugarli,et al.  Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1 , 2009, The Journal of cell biology.

[43]  Stacey M Smith,et al.  Assembly of nuclear DNA‐encoded subunits into mitochondrial complex IV, and their preferential integration into supercomplex forms in patient mitochondria , 2009, The FEBS journal.

[44]  N. Pfanner,et al.  Global Analysis of the Mitochondrial N-Proteome Identifies a Processing Peptidase Critical for Protein Stability , 2009, Cell.

[45]  T. Lithgow,et al.  Importing Mitochondrial Proteins: Machineries and Mechanisms , 2009, Cell.

[46]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[47]  Seon Ho Park,et al.  Replicative Senescence Induced by Romo1-derived Reactive Oxygen Species* , 2008, Journal of Biological Chemistry.

[48]  Seon Ho Park,et al.  A critical role for Romo1-derived ROS in cell proliferation. , 2008, Biochemical and biophysical research communications.

[49]  N. Pfanner,et al.  Motor-free mitochondrial presequence translocase drives membrane integration of preproteins , 2007, Nature Cell Biology.

[50]  D. Chan,et al.  OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L , 2007, The Journal of cell biology.

[51]  Ilka Wittig,et al.  High Resolution Clear Native Electrophoresis for In-gel Functional Assays and Fluorescence Studies of Membrane Protein Complexes* , 2007, Molecular & Cellular Proteomics.

[52]  Walter Neupert,et al.  Why Do We Still Have a Maternally Inherited Mitochondrial DNA ? Insights from Evolutionary Medicine , 2007 .

[53]  N. Pfanner,et al.  A Role for Tim21 in Membrane-Potential-Dependent Preprotein Sorting in Mitochondria , 2006, Current Biology.

[54]  Y. Yoo,et al.  A novel protein, Romo1, induces ROS production in the mitochondria. , 2006, Biochemical and biophysical research communications.

[55]  H. McBride,et al.  Mitochondria: More Than Just a Powerhouse , 2006, Current Biology.

[56]  Sara Cipolat,et al.  OPA1 Controls Apoptotic Cristae Remodeling Independently from Mitochondrial Fusion , 2006, Cell.

[57]  K. Mihara,et al.  Regulation of mitochondrial morphology through proteolytic cleavage of OPA1 , 2006, The EMBO journal.

[58]  N. Pfanner,et al.  Tim50 Maintains the Permeability Barrier of the Mitochondrial Inner Membrane , 2006, Science.

[59]  H. Schägger,et al.  Blue native PAGE , 2006, Nature Protocols.

[60]  D. Mokranjac,et al.  Role of Tim21 in Mitochondrial Translocation Contact Sites* , 2005, Journal of Biological Chemistry.

[61]  Albert Sickmann,et al.  Mitochondrial Presequence Translocase: Switching between TOM Tethering and Motor Recruitment Involves Tim21 and Tim17 , 2005, Cell.

[62]  A. M. van der Bliek,et al.  Loss of the Intermembrane Space Protein Mgm1/OPA1 Induces Swelling and Localized Constrictions along the Lengths of Mitochondria* , 2004, Journal of Biological Chemistry.

[63]  N. Pfanner,et al.  Pam16 has an essential role in the mitochondrial protein import motor , 2004, Nature Structural &Molecular Biology.

[64]  N. Pfanner,et al.  Mitochondrial translocation contact sites: separation of dynamic and stabilizing elements in formation of a TOM–TIM–preprotein supercomplex , 2003, The EMBO journal.

[65]  G. Lenaers,et al.  Loss of OPA1 Perturbates the Mitochondrial Inner Membrane Structure and Integrity, Leading to Cytochrome c Release and Apoptosis* , 2003, The Journal of Biological Chemistry.

[66]  H. Prokisch,et al.  Tim50, a novel component of the TIM23 preprotein translocase of mitochondria , 2003, The EMBO journal.

[67]  S. Nishikawa,et al.  Tim50 Is a Subunit of the TIM23 Complex that Links Protein Translocation across the Outer and Inner Mitochondrial Membranes , 2002, Cell.

[68]  N. Pfanner,et al.  The Mitochondrial Presequence Translocase An Essential Role of Tim50 in Directing Preproteins to the Import Channel , 2002, Cell.

[69]  W. Neupert,et al.  The protein import motor of mitochondria , 2002, Nature Reviews Molecular Cell Biology.

[70]  M. Mann,et al.  Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics* , 2002, Molecular & Cellular Proteomics.

[71]  A. Merlin,et al.  A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23 , 2001, Nature Structural Biology.

[72]  J. Grosgeorge,et al.  Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy , 2000, Nature Genetics.

[73]  A. Reichert,et al.  Genetic and structural characterization of the human mitochondrial inner membrane translocase. , 1999, Journal of molecular biology.

[74]  N. Pfanner,et al.  The Tim core complex defines the number of mitochondrial translocation contact sites and can hold arrested preproteins in the absence of matrix Hsp70–Tim44 , 1997, The EMBO journal.

[75]  N. Pfanner,et al.  Role of an energized inner membrane in mitochondrial protein import. Delta psi drives the movement of presequences. , 1991, The Journal of biological chemistry.

[76]  G. Schatz,et al.  Mitochondrial presequences. , 1988, The Journal of biological chemistry.

[77]  W. Neupert,et al.  Requirement of a membrane potential for the posttranslational transfer of proteins into mitochondria. , 1982, European journal of biochemistry.

[78]  G. Kitto [19] Intra- and extramitochondrial malate dehydrogenases from chicken and tuna heart: [EC 1.1.1.37 l-Malate: NAD oxidoreductase] , 1969 .