Linking visual response properties in the superior colliculus to saccade behavior

Here we examined the influence of the visual response in the superior colliculus (SC) (an oculomotor control structure integrating sensory, motor and cognitive signals) on the development of the motor command that drives saccadic eye movements in monkeys. We varied stimulus luminance to alter the timing and magnitude of visual responses in the SC and examined how these changes correlated with resulting saccade behavior. Increasing target luminance resulted in multiple modulations of the visual response, including increased magnitude and decreased response onset latency. These signal modulations correlated strongly with changes in saccade latency and metrics, indicating that these signal properties carry through to the neural computations that determine when, where and how fast the eyes will move. Thus, components of the earliest part of the visual response in the SC provide important building blocks for the neural basis of the sensory–motor transformation, highlighting a critical link between the properties of the visual response and saccade behavior.

[1]  Y Agid,et al.  Cortical control of reflexive visually-guided saccades. , 1991, Brain : a journal of neurology.

[2]  W. R. Hess,et al.  Motorische Funktion des Tektal- und Tegmentalgebietes; pp. 1–26 , 1946 .

[3]  D. Munoz,et al.  A neural correlate for the gap effect on saccadic reaction times in monkey. , 1995, Journal of neurophysiology.

[4]  C. Cusick,et al.  Anatomical organization of the superior colliculus in monkeys: corticotectal pathways for visual and visuomotor functions. , 1988, Progress in brain research.

[5]  Lance M. Optican,et al.  Unix-based multiple-process system, for real-time data acquisition and control , 1982 .

[6]  Richard J Krauzlis,et al.  Neuronal Activity in the Rostral Superior Colliculus Related to the Initiation of Pursuit and Saccadic Eye Movements , 2003, The Journal of Neuroscience.

[7]  R. Wurtz,et al.  Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. , 1995, Journal of neurophysiology.

[8]  J. Mitrofanis,et al.  Reticular thalamic region in the rabbit: Organisation of efferents to the superior colliculus , 1996, The Journal of comparative neurology.

[9]  K. Kopecz,et al.  Saccadic reaction times in gap/overlap paradigms: a model based on integration of intentional and visual information on neural, dynamic fields , 1995, Vision Research.

[10]  J. Schall,et al.  Neural Control of Voluntary Movement Initiation , 1996, Science.

[11]  R. Wurtz,et al.  The Neurobiology of Saccadic Eye Movements , 1989 .

[12]  HyungGoo R. Kim,et al.  Trial-to-trial Variability of Spike Response of V1 and Saccadic Response Time Animal Preparation , 2022 .

[13]  R. Klein,et al.  Contribution of the Primate Superior Colliculus to Inhibition of Return , 2002, Journal of Cognitive Neuroscience.

[14]  D. Robinson,et al.  A METHOD OF MEASURING EYE MOVEMENT USING A SCLERAL SEARCH COIL IN A MAGNETIC FIELD. , 1963, IEEE transactions on bio-medical engineering.

[15]  Etienne Olivier,et al.  Visual Responses on Neck Muscles Reveal Selective Gating that Prevents Express Saccades , 2004, Neuron.

[16]  Richard A. Andersen,et al.  Sensorimotor transformation during eye movements to remembered visual targets , 1991, Vision Research.

[17]  W. C. Hall,et al.  The Superior Colliculus : New Approaches for Studying Sensorimotor Integration , 2003 .

[18]  David L. Sparks,et al.  Saccades to remembered target locations: an analysis of systematic and variable errors , 1994, Vision Research.

[19]  M. A. Basso,et al.  Modulation of Neuronal Activity in Superior Colliculus by Changes in Target Probability , 1998, The Journal of Neuroscience.

[20]  J W McClurkin,et al.  The visual superior colliculus and pulvinar. , 1989, Reviews of oculomotor research.

[21]  C. Scudder,et al.  The microscopic anatomy and physiology of the mammalian saccadic system , 1996, Progress in Neurobiology.

[22]  E. Jones,et al.  Comprar The Thalamus 2 Volume Set | Edward G. Jones | 9780521858816 | Cambridge University Press , 2007 .

[23]  B. Fischer,et al.  Saccadic eye movements after extremely short reaction times in the monkey , 1983, Brain Research.

[24]  Sabine Kastner,et al.  Visual responses of the human superior colliculus: a high-resolution functional magnetic resonance imaging study. , 2005, Journal of neurophysiology.

[25]  A. K. Moschovakis,et al.  The local loop of the saccadic system closes downstream of the superior colliculus , 2006, Neuroscience.

[26]  Jillian H. Fecteau,et al.  Using auditory and visual stimuli to investigate the behavioral and neuronal consequences of reflexive covert orienting. , 2004, Journal of neurophysiology.

[27]  Y. Lacasse,et al.  From the authors , 2005, European Respiratory Journal.

[28]  N. P. Bichot,et al.  Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. , 1996, Journal of neurophysiology.

[29]  R. Klein,et al.  A Model of Saccade Initiation Based on the Competitive Integration of Exogenous and Endogenous Signals in the Superior Colliculus , 2001, Journal of Cognitive Neuroscience.

[30]  R. Andersen,et al.  Intention, Action Planning, and Decision Making in Parietal-Frontal Circuits , 2009, Neuron.

[31]  D P Munoz,et al.  Saccadic reaction time in the monkey: advanced preparation of oculomotor programs is primarily responsible for express saccade occurrence. , 1996, Journal of neurophysiology.

[32]  S. Sherman The thalamus is more than just a relay , 2007, Current Opinion in Neurobiology.

[33]  J. Mitrofanis,et al.  Patterns of brainstem projection to the thalamic reticular nucleus , 1998, The Journal of comparative neurology.

[34]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[35]  W. Fries Cortical projections to the superior colliculus in the macaque monkey: A retrograde study using horseradish peroxidase , 1984, The Journal of comparative neurology.

[36]  D. Munoz,et al.  Saccadic Probability Influences Motor Preparation Signals and Time to Saccadic Initiation , 1998, The Journal of Neuroscience.

[37]  D L Sparks,et al.  Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. , 1986, Physiological reviews.

[38]  W. R. Hess,et al.  Motor Functions of Tectal and Tegmental Areas , 1981 .

[39]  David L. Sparks,et al.  Systematic errors for saccades to remembered targets: Evidence for a dissociation between saccade metrics and activity in the superior colliculus , 1994, Vision Research.

[40]  R. Wurtz,et al.  Progression in neuronal processing for saccadic eye movements from parietal cortex area lip to superior colliculus. , 2001, Journal of neurophysiology.

[41]  R H Wurtz,et al.  Organization of monkey superior colliculus: intermediate layer cells discharging before eye movements. , 1976, Journal of neurophysiology.

[42]  S. Bisti,et al.  Sensitivity to spatial frequency and contrast of visual cells in the cat superior colliculus , 1976, Vision Research.

[43]  John H. R. Maunsell,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[44]  H. Spitzer,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. I. Response characteristics. , 1987, Journal of neurophysiology.

[45]  T. Gawne The simultaneous coding of orientation and contrast in the responses of V1 complex cells , 2000, Experimental Brain Research.

[46]  S. Scott,et al.  Discharge properties of monkey tectoreticular neurons. , 2006, Journal of neurophysiology.

[47]  Thomas P. Trappenberg,et al.  Spatial Interactions in the Superior Colliculus Predict Saccade Behavior in a Neural Field Model , 2012, Journal of Cognitive Neuroscience.

[48]  M. Saslow Effects of components of displacement-step stimuli upon latency for saccadic eye movement. , 1967, Journal of the Optical Society of America.

[49]  A K Moschovakis,et al.  A structural basis for Hering's law: projections to extraocular motoneurons. , 1990, Science.

[50]  Thomas Fitzgibbon,et al.  First order connections of the visual sector of the thalamic reticular nucleus in marmoset monkeys (Callithrix jacchus) , 2007, Visual Neuroscience.

[51]  D. Sparks Functional properties of neurons in the monkey superior colliculus: Coupling of neuronal activity and saccade onset , 1978, Brain Research.

[52]  Robert A. Marino,et al.  The effects of bottom-up target luminance and top-down spatial target predictability on saccadic reaction times , 2009, Experimental Brain Research.

[53]  Robert A. Marino,et al.  Free viewing of dynamic stimuli by humans and monkeys. , 2009, Journal of vision.

[54]  Jillian H. Fecteau,et al.  Neural correlates of the automatic and goal-driven biases in orienting spatial attention. , 2004, Journal of neurophysiology.

[55]  David L. Sparks,et al.  Response properties of eye movement-related neurons in the monkey superior colliculus , 1975, Brain Research.

[56]  Robert A. Marino,et al.  Spatial relationships of visuomotor transformations in the superior colliculus map. , 2008, Journal of neurophysiology.

[57]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[58]  R. Wurtz,et al.  Location of saccade-related neurons in the macaque superior colliculus , 1991, Experimental Brain Research.

[59]  D. B. Bender,et al.  Distribution of corticotectal cells in macaque , 2003, Experimental Brain Research.

[60]  M E Goldberg,et al.  Dependence of saccade-related activity in the primate superior colliculus on visual target presence. , 2001, Journal of neurophysiology.

[61]  D. Uhlrich,et al.  Laminar and cellular targets of individual thalamic reticular nucleus axons in the lateral geniculate nucleus in the prosimian primate Galago , 2003, The Journal of comparative neurology.

[62]  E. Keller,et al.  Activity of visuomotor burst neurons in the superior colliculus accompanying express saccades. , 1996, Journal of neurophysiology.

[63]  R. Wurtz,et al.  Superior Colliculus Cell Responses Related to Eye Movements in Awake Monkeys , 1971, Science.

[64]  Jeffrey D. Schall,et al.  CONCURRENT, DISTRIBUTED CONTROL OF SACCADE INITIATION IN THE FRONTAL EYE FIELD AND SUPERIOR COLLICULUS , 2003 .

[65]  A. Opstal,et al.  Stimulus intensity modifies saccadic reaction time and visual response latency in the superior colliculus , 2006, Experimental Brain Research.

[66]  B. Richmond,et al.  Latency: another potential code for feature binding in striate cortex. , 1996, Journal of neurophysiology.

[67]  Michele A Basso,et al.  Preparing to Move Increases the Sensitivity of Superior Colliculus Neurons , 2008, The Journal of Neuroscience.

[68]  Robert D. Rafal,et al.  Strategic control over saccadic eye movements: Studies of the fixation offset effect , 2000, Perception & psychophysics.

[69]  Brian D Corneil,et al.  Neuromuscular consequences of reflexive covert orienting , 2008, Nature Neuroscience.

[70]  E. Keller,et al.  Saccade target selection in the superior colliculus during a visual search task. , 2002, Journal of neurophysiology.

[71]  J. K. Harting,et al.  Connectional studies of the primate lateral geniculate nucleus: Distribution of axons arising from the thalamic reticular nucleus of Galago crassicaudatus , 1991, The Journal of comparative neurology.

[72]  W. C. Hall,et al.  Exploring the superior colliculus in vitro. , 2009, Journal of neurophysiology.

[73]  Robert M. McPeek,et al.  What neural pathways mediate express saccades? , 1993, Behavioral and Brain Sciences.

[74]  H. Killackey,et al.  The Topographic Organization and Axis of Projection within the Visual Sector of the Rabbit's Thalamic Reticular Nucleus , 1989, The European journal of neuroscience.

[75]  John H. R. Maunsell,et al.  Effects of spatial attention on contrast response functions in macaque area V4. , 2006, Journal of neurophysiology.

[76]  Michael Conley,et al.  Organization of the Visual Sector of the Thalamic Reticular Nucleus in Galago , 1990, The European journal of neuroscience.

[77]  J. Schall,et al.  Neural selection and control of visually guided eye movements. , 1999, Annual review of neuroscience.

[78]  Laurent Itti,et al.  Color-Related Signals in the Primate Superior Colliculus , 2009, The Journal of Neuroscience.

[79]  Robert H. Wurtz,et al.  Projection of area 8 (frontal eye field) to superior colliculus in the monkey. An autoradiographic study , 1976, Brain Research.

[80]  Michael E Goldberg,et al.  Saccade-related activity in the primate superior colliculus depends on the presence of local landmarks at the saccade endpoint. , 2003, Journal of neurophysiology.

[81]  H Sherk,et al.  Sources of subcortical afferents to the macaque's dorsal lateral geniculate nucleus , 1995, The Anatomical record.

[82]  D. Munoz,et al.  Neuronal Activity in Monkey Superior Colliculus Related to the Initiation of Saccadic Eye Movements , 1997, The Journal of Neuroscience.

[83]  Joonyeol Lee,et al.  Spatial Attention and the Latency of Neuronal Responses in Macaque Area V4 , 2007, The Journal of Neuroscience.

[84]  D. Munoz,et al.  Priming of head premotor circuits during oculomotor preparation. , 2007, Journal of neurophysiology.

[85]  D. Sparks,et al.  The role of the superior colliculus in saccade initiation: a study of express saccades and the gap effect , 2000, Vision Research.

[86]  A K Moschovakis,et al.  Structure-function relationships in the primate superior colliculus. II. Morphological identity of presaccadic neurons. , 1988, Journal of neurophysiology.

[87]  Hidehiko Komatsu,et al.  A grid system and a microsyringe for single cell recording , 1988, Journal of Neuroscience Methods.