Characterisation of sphingolipids in the human lens by thin layer chromatography-desorption electrospray ionisation mass spectrometry.

[1]  C. Costello,et al.  Direct analysis of sialylated or sulfated glycosphingolipids and other polar and neutral lipids using TLC-MS interfaces[S] , 2014, Journal of Lipid Research.

[2]  S. Ellis,et al.  Surface analysis of lipids by mass spectrometry: more than just imaging. , 2013, Progress in lipid research.

[3]  F. Leisch,et al.  Instability of the cellular lipidome with age , 2012, AGE.

[4]  S. Ellis,et al.  Using ambient ozone for assignment of double bond position in unsaturated lipids. , 2012, The Analyst.

[5]  Alfred H. Merrill,et al.  Sphingolipid and Glycosphingolipid Metabolic Pathways in the Era of Sphingolipidomics , 2011, Chemical reviews.

[6]  J. Shiea,et al.  Thin layer chromatography/mass spectrometry. , 2011, Journal of chromatography. A.

[7]  C. Hopf,et al.  Imaging of complex sulfatides SM3 and SB1a in mouse kidney using MALDI-TOF/TOF mass spectrometry , 2011, Analytical and bioanalytical chemistry.

[8]  Xiangjia Zhu,et al.  Imaging of human lens lipids by desorption electrospray ionization mass spectrometry , 2010, Journal of the American Society for Mass Spectrometry.

[9]  D. Borchman,et al.  Lipids and the ocular lens , 2010, Journal of Lipid Research.

[10]  V. Havlíček,et al.  Visualizing spatial lipid distribution in porcine lens by MALDI imaging high-resolution mass spectrometry , 2010, Journal of Lipid Research.

[11]  S. Blanksby,et al.  Sphingolipid distribution changes with age in the human lens[S] , 2010, Journal of Lipid Research.

[12]  J. Wiseman,et al.  Direct analysis of Salvia divinorum leaves for salvinorin A by thin layer chromatography and desorption electrospray ionization multi-stage tandem mass spectrometry. , 2010, Rapid communications in mass spectrometry : RCM.

[13]  J. Müthing,et al.  Advances on the compositional analysis of glycosphingolipids combining thin-layer chromatography with mass spectrometry. , 2010, Mass spectrometry reviews.

[14]  D. Borchman,et al.  Reevaluation of the phospholipid composition in membranes of adult human lenses by (31)P NMR and MALDI MS. , 2010, Biochimica et biophysica acta.

[15]  G. Corso,et al.  Desorption electrospray ionization mass spectrometry analysis of lipids after two-dimensional high-performance thin-layer chromatography partial separation. , 2010, Analytical chemistry.

[16]  Michael C. Thomas,et al.  Identification of abundant alkyl ether glycerophospholipids in the human lens by tandem mass spectrometry techniques. , 2009, Analytical chemistry.

[17]  G. V. Van Berkel,et al.  HPTLC/DESI-MS imaging of tryptic protein digests separated in two dimensions. , 2008, Journal of mass spectrometry : JMS.

[18]  S. Blanksby,et al.  Human lens lipids differ markedly from those of commonly used experimental animals. , 2008, Biochimica et biophysica acta.

[19]  K. Li,et al.  Mass spectrometric identification of molecular species of phosphatidylcholine and lysophosphatidylcholine extracted from shark liver. , 2007, Journal of agricultural and food chemistry.

[20]  R. Cooks,et al.  Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. , 2005, Journal of mass spectrometry : JMS.

[21]  D. Borchman,et al.  Human lens phospholipid changes with age and cataract. , 2005, Investigative ophthalmology & visual science.

[22]  R. Proia,et al.  Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon-glial interactions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  M. Ford,et al.  Thin-layer chromatography and mass spectrometry coupled using desorption electrospray ionization. , 2005, Analytical chemistry.

[24]  D. Borchman,et al.  Lens lipids and maximum lifespan. , 2004, Experimental eye research.

[25]  F. Hsu,et al.  Studies on sulfatides by quadrupole ion-trap mass spectrometry with electrospray ionization: Structural characterization and the fragmentation processes that include an unusual internal galactose residue loss and the classical charge-remote fragmentation , 2004, Journal of the American Society for Mass Spectrometry.

[26]  D. Borchman,et al.  Isolation and lipid characterization of cholesterol-enriched fractions in cortical and nuclear human lens fibers. , 2003, Investigative ophthalmology & visual science.

[27]  T. Hikita,et al.  Kidney lipids in galactosylceramide synthase-deficient mice. Absence of galactosylsulfatide and compensatory increase in more polar sulfoglycolipids. , 2000, Journal of lipid research.

[28]  R. Mason,et al.  Direct Evidence for Immiscible Cholesterol Domains in Human Ocular Lens Fiber Cell Plasma Membranes* , 1999, The Journal of Biological Chemistry.

[29]  J. Turk,et al.  Electrospray ionization tandem mass spectrometric analysis of sulfatide. Determination of fragmentation patterns and characterization of molecular species expressed in brain and in pancreatic islets. , 1998, Biochimica et biophysica acta.

[30]  W. Byrdwell,et al.  Dual parallel mass spectrometers for analysis of sphingolipid, glycerophospholipid and plasmalogen molecular species. , 1998, Rapid communications in mass spectrometry : RCM.

[31]  M. Hoshi,et al.  Age-related changes in ganglioside composition in human lens. , 1995, Experimental eye research.

[32]  M. Hoshi,et al.  Comparative study of glycosphingolipid composition in mammalian lenses. , 1994, Experimental eye research.

[33]  D. Borchman,et al.  Separation and characterization of the unknown phospholipid in human lens membranes. , 1994, Investigative ophthalmology & visual science.

[34]  D. Borchman,et al.  Regional and age-dependent differences in the phospholipid composition of human lens membranes. , 1994, Investigative ophthalmology & visual science.

[35]  H. Yoshino,et al.  Glycolipid composition of human cataractous lenses. Characterization of Lewisx glycolipids. , 1994, The Journal of biological chemistry.

[36]  Y. Koide,et al.  Characterization of neutral glycosphingolipids in human cataractous lens. , 1993, The Journal of biological chemistry.

[37]  Y. Ohashi,et al.  Fast-atom-bombardment chemistry of sulfatide (3-sulfogalactosylceramide) , 1991, Carbohydrate research.

[38]  T. Merchant,et al.  Human crystalline lens phospholipid analysis with age. , 1991, Investigative ophthalmology & visual science.

[39]  M. Ogiso,et al.  Increase in lens gangliosides due to aging and cataract progression in human senile cataract. , 1990, Investigative ophthalmology & visual science.

[40]  K. Ogura,et al.  Glycolipids of the bovine pineal organ and retina. , 1987, Journal of Biochemistry (Tokyo).

[41]  L. Horrocks,et al.  On the role of sulfolipids in mammalian metabolism , 1985, Molecular and Cellular Biochemistry.

[42]  G. Rouser,et al.  The isolation and partial characterization of gangliosides and ceramide polyhexosides from the lens of the human eye , 2007, Lipids.

[43]  D. Borchman,et al.  Liquid chromatography/mass-spectrometric characterization of sphingomyelin and dihydrosphingomyelin of human lens membranes. , 1997, Ophthalmic research.

[44]  T. Glonek,et al.  Interspecies comparisons of lens phospholipids. , 1995, Current eye research.