A class of markov models for longitudinal ordinal data.

Generalized linear models with serial dependence are often used for short longitudinal series. Heagerty (2002, Biometrics58, 342-351) has proposed marginalized transition models for the analysis of longitudinal binary data. In this article, we extend this work to accommodate longitudinal ordinal data. Fisher-scoring algorithms are developed for estimation. Methods are illustrated on quality-of-life data from a recent colorectal cancer clinical trial.

[1]  A. Agresti,et al.  The analysis of ordered categorical data: An overview and a survey of recent developments , 2005 .

[2]  Ivy Liu The Analysis of Ordered Categorical Data : An Overview and a Survey of Recent Developments , 2005 .

[3]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[4]  P. Heagerty Marginally Specified Logistic‐Normal Models for Longitudinal Binary Data , 1999, Biometrics.

[5]  N M Laird,et al.  Mixture models for the joint distribution of repeated measures and event times. , 1997, Statistics in medicine.

[6]  N. Laird,et al.  A likelihood-based method for analysing longitudinal binary responses , 1993 .

[7]  D. Rubin,et al.  Principal Stratification in Causal Inference , 2002, Biometrics.

[8]  Donald Hedeker,et al.  A Mixed‐Effects Regression Model for Longitudinal Multivariate Ordinal Data , 2006, Biometrics.

[9]  Scott L. Zeger,et al.  Marginalized Multilevel Models and Likelihood Inference , 2000 .

[10]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[11]  D. Cox,et al.  Inference and Asymptotics , 1994 .

[12]  S. Zeger,et al.  Marginal Regression Models for Clustered Ordinal Measurements , 1996 .

[13]  P. McCullagh Regression Models for Ordinal Data , 1980 .

[14]  D. Pauler,et al.  Pattern mixture models for longitudinal quality of life studies in advanced stage disease , 2003, Statistics in medicine.

[15]  P. Heagerty,et al.  Misspecified maximum likelihood estimates and generalised linear mixed models , 2001 .

[16]  Daniel J Sargent,et al.  A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[17]  Scott L. Zeger,et al.  Generalized linear models with random e ects: a Gibbs sampling approach , 1991 .

[18]  A. Azzalini Logistic regression for autocorrelated data with application to repeated measures , 1994 .

[19]  R. Little Pattern-Mixture Models for Multivariate Incomplete Data , 1993 .

[20]  P. Nurmi Mixture Models , 2008 .

[21]  J. Dale Global cross-ratio models for bivariate, discrete, ordered responses. , 1986, Biometrics.

[22]  D. Cox,et al.  Parameter Orthogonality and Approximate Conditional Inference , 1987 .

[23]  Emmanuel Lesaffre,et al.  Latent‐variable models for longitudinal data with bivariate ordinal outcomes , 2007, Statistics in medicine.

[24]  Patrick J Heagerty,et al.  Marginalized Transition Models and Likelihood Inference for Longitudinal Categorical Data , 2002, Biometrics.

[25]  D. Hedeker,et al.  Random effects probit and logistic regression models for three-level data. , 1997, Biometrics.

[26]  W. Sribney Random-effects probit , 1996 .

[27]  D. Miglioretti,et al.  Marginal modeling of multilevel binary data with time-varying covariates. , 2004, Biostatistics.

[28]  Patrick J Heagerty,et al.  Directly parameterized regression conditioning on being alive: analysis of longitudinal data truncated by deaths. , 2005, Biostatistics.

[29]  Stuart R. Lipsitz,et al.  Analyzing bivariate ordinal data using a global odds ratio , 1995 .

[30]  H. Akaike A new look at the statistical model identification , 1974 .

[31]  G. Molenberghs,et al.  Marginal Modeling of Correlated Ordinal Data Using a Multivariate Plackett Distribution , 1994 .