Sentiment analysis: text, pre-processing, reader views and cross domains

[1]  Lei Zhang,et al.  Sentiment Analysis and Opinion Mining , 2017, Encyclopedia of Machine Learning and Data Mining.

[2]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[3]  Songbo Tan,et al.  A survey on sentiment detection of reviews , 2009, Expert Syst. Appl..

[4]  Michael Kearns,et al.  Computational complexity of machine learning , 1990, ACM distinguished dissertations.

[5]  Junlan Feng,et al.  Robust Sentiment Detection on Twitter from Biased and Noisy Data , 2010, COLING.

[6]  Eugene Charniak,et al.  Statistical language learning , 1997 .

[7]  Soo-Min Kim,et al.  Determining the Sentiment of Opinions , 2004, COLING.

[8]  Nikolaus Hautsch,et al.  When machines read the news: Using automated text analytics to quantify high frequency news-implied market reactions , 2011 .

[9]  Qiong Wu,et al.  Graph Ranking for Sentiment Transfer , 2009, ACL.

[10]  Bing Liu,et al.  Mining Opinion Features in Customer Reviews , 2004, AAAI.

[11]  Japinder Singh,et al.  Feature-based opinion mining and ranking , 2012, J. Comput. Syst. Sci..

[12]  Mike Y. Chen,et al.  Yahoo! For Amazon: Sentiment Parsing from Small Talk on the Web , 2001 .

[13]  John Blitzer,et al.  Domain Adaptation with Structural Correspondence Learning , 2006, EMNLP.

[14]  Syin Chan,et al.  Effectiveness of Simple Linguistic Processing in Automatic Sentiment Classification of Product Reviews , 2004 .

[15]  Lei Liu,et al.  Feature selection with dynamic mutual information , 2009, Pattern Recognit..

[16]  Siddharth Patwardhan,et al.  Feature Subsumption for Opinion Analysis , 2006, EMNLP.

[17]  Sasha Blair-Goldensohn,et al.  Sentiment Summarization: Evaluating and Learning User Preferences , 2009, EACL.

[18]  Su-Yun Huang,et al.  Reduced Support Vector Machines: A Statistical Theory , 2007, IEEE Transactions on Neural Networks.

[19]  Johan Bollen,et al.  Modeling Public Mood and Emotion: Twitter Sentiment and Socio-Economic Phenomena , 2009, ICWSM.

[20]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[21]  Sivaji Bandyopadhyay,et al.  Sentiment analysis: what is the end user's requirement? , 2012, WIMS '12.

[22]  Yücel Saygin,et al.  Sentimental causal rule discovery from Twitter , 2014, Expert Syst. Appl..

[23]  Hsin-Hsi Chen,et al.  Major topic detection and its application to opinion summarization , 2005, SIGIR '05.

[24]  Xiaotie Deng,et al.  Exploiting Topic based Twitter Sentiment for Stock Prediction , 2013, ACL.

[25]  Songbo Tan,et al.  A novel scheme for domain-transfer problem in the context of sentiment analysis , 2007, CIKM '07.

[26]  Razvan C. Bunescu,et al.  Sentiment analyzer: extracting sentiments about a given topic using natural language processing techniques , 2003, Third IEEE International Conference on Data Mining.

[27]  Huan Liu,et al.  Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution , 2003, ICML.

[28]  Isaac G. Councill,et al.  What's great and what's not: learning to classify the scope of negation for improved sentiment analysis , 2010, NeSp-NLP@ACL.

[29]  Arjun Mukherjee,et al.  Exploiting Domain Knowledge in Aspect Extraction , 2013, EMNLP.

[30]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[31]  Christopher Potts,et al.  Learning Word Vectors for Sentiment Analysis , 2011, ACL.

[32]  Mike Thelwall,et al.  Sentiment in Twitter events , 2011, J. Assoc. Inf. Sci. Technol..

[33]  Elisabetta Fersini,et al.  Enhance User-Level Sentiment Analysis on Microblogs with Approval Relations , 2013, AI*IA.

[34]  Jin-Cheon Na,et al.  Phrase-Level Sentiment Polarity Classification Using Rule-Based Typed Dependencies and Additional Complex Phrases Consideration , 2012, Journal of Computer Science and Technology.

[35]  Luo Si,et al.  Knowledge Transfer and Opinion Detection in the TREC2006 Blog Track , 2006 .

[36]  John Blitzer,et al.  Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification , 2007, ACL.

[37]  Lillian Lee,et al.  Opinion Mining and Sentiment Analysis , 2008, Found. Trends Inf. Retr..

[38]  Mike Thelwall,et al.  Sentiment in short strength detection informal text , 2010 .

[39]  David M. Pennock,et al.  Mining the peanut gallery: opinion extraction and semantic classification of product reviews , 2003, WWW '03.

[40]  Luis Alfonso Ureña López,et al.  Experiments with SVM to classify opinions in different domains , 2011, Expert Syst. Appl..

[41]  Thomas D. Berry,et al.  Public Information Arrival , 1994 .

[42]  Jan Paralic,et al.  An approach to feature selection for sentiment analysis , 2011, 2011 15th IEEE International Conference on Intelligent Engineering Systems.

[43]  Oren Etzioni,et al.  Extracting Product Features and Opinions from Reviews , 2005, HLT.

[44]  Rudy Prabowo,et al.  Sentiment analysis: A combined approach , 2009, J. Informetrics.

[45]  Kurt Hornik,et al.  Text Mining Infrastructure in R , 2008 .

[46]  Hsinchun Chen,et al.  Sentiment analysis in multiple languages: Feature selection for opinion classification in Web forums , 2008, TOIS.

[47]  Chih-Fong Tsai,et al.  Combining multiple feature selection methods for stock prediction: Union, intersection, and multi-intersection approaches , 2010, Decis. Support Syst..

[48]  Andrea Esuli,et al.  SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining , 2010, LREC.

[49]  Philip S. Yu,et al.  A holistic lexicon-based approach to opinion mining , 2008, WSDM '08.

[50]  Maite Taboada,et al.  Analyzing Appraisal Automatically , 2004 .

[51]  Leon N. Cooper,et al.  Training Data Selection for Support Vector Machines , 2005, ICNC.

[52]  Masaru Kitsuregawa,et al.  Building Lexicon for Sentiment Analysis from Massive Collection of HTML Documents , 2007, EMNLP.

[53]  Qiang Yang,et al.  Cross-domain sentiment classification via spectral feature alignment , 2010, WWW '10.

[54]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[55]  Bernhard Schölkopf,et al.  Comparing support vector machines with Gaussian kernels to radial basis function classifiers , 1997, IEEE Trans. Signal Process..

[56]  Yutaka Matsuo,et al.  Earthquake shakes Twitter users: real-time event detection by social sensors , 2010, WWW '10.

[57]  Namita Mittal,et al.  Optimal Feature Selection for Sentiment Analysis , 2013, CICLing.

[58]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[59]  Bo Pang,et al.  Seeing Stars: Exploiting Class Relationships for Sentiment Categorization with Respect to Rating Scales , 2005, ACL.

[60]  Arjun Mukherjee,et al.  Discovering User Interactions in Ideological Discussions , 2013, ACL.

[61]  David Leinweber,et al.  Relating news analytics to stock returns , 2012 .

[62]  Dana Angluin,et al.  Computational learning theory: survey and selected bibliography , 1992, STOC '92.

[63]  Johan Bollen,et al.  Twitter mood predicts the stock market , 2010, J. Comput. Sci..

[64]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[65]  Soo-Min Kim,et al.  Automatic Detection of Opinion Bearing Words and Sentences , 2005, IJCNLP.

[66]  Bing Liu,et al.  Sentiment Analysis and Subjectivity , 2010, Handbook of Natural Language Processing.

[67]  Fabrizio Sebastiani,et al.  Machine learning in automated text categorization , 2001, CSUR.

[68]  Alok N. Choudhary,et al.  Sentiment Analysis of Conditional Sentences , 2009, EMNLP.

[69]  Richong Zhang,et al.  An information gain-based approach for recommending useful product reviews , 2011, Knowledge and Information Systems.

[70]  Maite Taboada,et al.  Methods for Creating Semantic Orientation Dictionaries , 2006, LREC.

[71]  Mike Y. Chen,et al.  Yahoo! for Amazon: Sentiment Extraction from Small Talk on the Web , 2001 .

[72]  Patricio Martínez-Barco,et al.  Subjectivity and sentiment analysis: An overview of the current state of the area and envisaged developments , 2012, Decis. Support Syst..

[73]  Sasha Blair-Goldensohn,et al.  Building a Sentiment Summarizer for Local Service Reviews , 2008 .

[74]  Mike Thelwall,et al.  Do Neighbours Help? An Exploration of Graph-based Algorithms for Cross-domain Sentiment Classification , 2012, EMNLP.

[75]  Harith Alani,et al.  Automatically Extracting Polarity-Bearing Topics for Cross-Domain Sentiment Classification , 2011, ACL.

[76]  Bo Pang,et al.  A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts , 2004, ACL.

[77]  I S Kohane,et al.  Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[78]  Janyce Wiebe,et al.  Identifying Collocations for Recognizing Opinions , 2001 .

[79]  Fuhui Long,et al.  Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[80]  Wayne Niblack,et al.  Sentiment mining in WebFountain , 2005, 21st International Conference on Data Engineering (ICDE'05).

[81]  Mike Thelwall,et al.  Biographies or Blenders: Which Resource Is Best for Cross-Domain Sentiment Analysis? , 2012, CICLing.

[82]  Hong Yu,et al.  Towards Answering Opinion Questions: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences , 2003, EMNLP.

[83]  Rohini K. Srihari,et al.  Using Verbs and Adjectives to Automatically Classify Blog Sentiment , 2006, AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs.

[84]  Soon Myoung Chung,et al.  Text Clustering with Feature Selection by Using Statistical Data , 2008, IEEE Transactions on Knowledge and Data Engineering.

[85]  M. Mitchell,et al.  The Impact of Public Information on the Stock Market , 1994 .

[86]  Ying Wah Teh,et al.  Text mining for market prediction: A systematic review , 2014, Expert Syst. Appl..