Approximating fractional derivatives through the generalized mean

Abstract This paper addresses the calculation of fractional order expressions through rational fractions. The article starts by analyzing the techniques adopted in the continuous to discrete time conversion. The problem is re-evaluated in an optimization perspective by tacking advantage of the degree of freedom provided by the generalized mean formula. The results demonstrate the superior performance of the new algorithm.

[1]  J. Machado Analysis and design of fractional-order digital control systems , 1997 .

[2]  Mohamad Adnan Al-Alaoui,et al.  Filling The Gap Between The Bilinear and The Backward-Difference Transforms: An Interactive Design Approach , 1997 .

[3]  K. Moore,et al.  Discretization schemes for fractional-order differentiators and integrators , 2002 .

[4]  Yangquan Chen,et al.  Two direct Tustin discretization methods for fractional-order differentiator/integrator , 2003, J. Frankl. Inst..

[5]  José António Tenreiro Machado,et al.  Time domain design of fractional differintegrators using least-squares , 2006, Signal Process..

[6]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[7]  Peter J. Torvik,et al.  Fractional calculus in the transient analysis of viscoelastically damped structures , 1983 .

[8]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[9]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[10]  J. Bibby Axiomatisations of the average and a further generalisation of monotonic sequences , 1974, Glasgow Mathematical Journal.

[11]  A. Méhauté,et al.  Fractal Geometries Theory and Applications , 1991 .

[12]  Chien-Cheng Tseng,et al.  Design of fractional order digital FIR differentiators , 2001, IEEE Signal Process. Lett..

[13]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[14]  Mohamad Adnan Al-Alaoui,et al.  Novel digital integrator and differentiator , 1993 .

[15]  F. Mainardi Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena , 1996 .

[16]  Eric W. Weisstein,et al.  The CRC concise encyclopedia of mathematics , 1999 .

[17]  J. A. Tenreiro Machado,et al.  Approximating fractional derivatives in the perspective of system control , 2009 .

[18]  Jan M Smith Mathematical Modeling and digital Simulation for Engineers and Scientists , 1988 .

[19]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[20]  I. Podlubny Fractional differential equations , 1998 .

[21]  Yangquan Chen,et al.  A new IIR-type digital fractional order differentiator , 2003, Signal Process..

[22]  Chien-Cheng Tseng,et al.  Design of fractional order digital FIR differentiators , 2001, IEEE Signal Processing Letters.

[23]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[24]  J. A. Tenreiro Machado,et al.  Discrete-time fractional-order controllers , 2001 .