A New Approach to Finding a Risk-Informed Safety Factor for “Fail-Safe” Pressure Vessel and Piping Design

The purpose of this paper is to present a new approach to finding a risk-informed safety factor for the “fail-safe” design of a high-consequence engineering system. The new approach is based on the assumption of a 99.99 % confidence level and a 99.99 % coverage, and the application of the classical theory of tolerance limits, error propagation, and a method of statistical model parameter estimation known as the bootstrap method. To illustrate this new approach, we first apply the methodology to the UTS data of six materials ranging from glass, ceramics, to a high-strength steel at both 20 C and 600 C, and then to the fatigue life estimation of a BK-7 glass using two available additional sets of laboratory test data. Significance and limitations of our new approach to the “fail-safe” UTS design and fatigue life prediction of an aging PVP or aircraft are presented and discussed.

[1]  Anthony G. Evans,et al.  An Error Analysis of Failure Prediction Techniques Derived From Fracture Mechanics , 1975 .

[2]  J. Quinn,et al.  A practical and systematic review of Weibull statistics for reporting strengths of dental materials. , 2010, Dental materials : official publication of the Academy of Dental Materials.

[3]  Martin Langkau,et al.  Boeing 787 Dreamliner , 2014 .

[4]  Ernst G. Frankel Systems Reliability and Risk Analysis , 1983 .

[5]  H. Peterlik,et al.  The validity of Weibull estimators-experimental verification , 1997 .

[6]  AN Kolmogorov-Smirnov,et al.  Sulla determinazione empírica di uma legge di distribuzione , 1933 .

[7]  Franz Dieter Fischer,et al.  Fracture statistics of brittle materials: Weibull or normal distribution. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  G. J. DeSalvo THEORY AND STRUCTURAL DESIGN APPLICATIONS OF WEIBULL STATISTICS. , 1970 .

[9]  John I. McCool,et al.  Using the Weibull Distribution: Reliability, Modeling, and Inference , 2012 .

[10]  Edwin R. Fuller,et al.  Fracture mechanics approach to the design of glass aircraft windows: a case study , 1994, Optics & Photonics.

[11]  Z. Kato,et al.  Strength‐Processing Defects Relationship Based on Micrographic Analysis and Fracture Mechanics in Alumina Ceramics , 2009 .

[12]  Robert E. Melchers,et al.  Probabilistic Risk Assessment of Engineering Systems , 1997 .

[13]  Debashis Kushary,et al.  Bootstrap Methods and Their Application , 2000, Technometrics.

[14]  N. Sugiura Further analysts of the data by akaike' s information criterion and the finite corrections , 1978 .

[15]  Luis A. Escobar,et al.  Statistical Intervals: A Guide for Practitioners , 1991 .

[16]  T. W. Anderson,et al.  Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .

[17]  H. Akaike A Bayesian extension of the minimum AIC procedure of autoregressive model fitting , 1979 .

[18]  Ernst G. Frankel Reliability and Risk in Perspective , 1984 .

[19]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[20]  Asit P. Basu,et al.  Probabilistic Risk Analysis , 2002 .

[21]  Gordon Johnston,et al.  Statistical Models and Methods for Lifetime Data , 2003, Technometrics.

[22]  J. Aldrich R.A. Fisher and the making of maximum likelihood 1912-1922 , 1997 .

[23]  John J. Burke,et al.  Risk and failure analysis for improved performance and reliability; Proceedings of the Twenty-fourth Sagamore Army Materials Research Conference, Raquette Lake, N.Y., August 21-26, 1977 , 1980 .

[24]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .

[25]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[26]  Jeffrey T. Fong,et al.  Uncertainties in fatigue life prediction and a rational definition of safety factors , 1978 .

[27]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[28]  A. J. Watkins On expectations associated with maximum likelihood estimation in the Weibull distribution , 1998 .

[29]  W. Weibull A statistical theory of the strength of materials , 1939 .

[30]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[31]  Robert Danzer,et al.  A general strength distribution function for brittle materials , 1992 .

[32]  A. Cohen,et al.  Maximum Likelihood Estimation in the Weibull Distribution Based On Complete and On Censored Samples , 1965 .

[33]  James J. Filliben,et al.  A Risk-Uncertainty Formula Accounting for Uncertainties of Failure Probability and Consequence in a Nuclear Powerplant , 2010 .

[34]  W. Weibull,et al.  The phenomenon of rupture in solids , 1939 .

[35]  Betty Jones Whitten,et al.  Modified Moment Estimation for the Three-Parameter Weibull Distribution , 1984 .

[36]  Lawrence Barker System Reliability: Concepts and Applications , 2008 .

[37]  Jack R. Benjamin,et al.  A Probabilistic Basis for a Deterministic Code , 1969 .

[38]  D. Darling,et al.  A Test of Goodness of Fit , 1954 .

[39]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[40]  Charles Annis,et al.  Statistical Distributions in Engineering , 2001, Technometrics.

[41]  Lee J. Bain,et al.  Some complete and censored sampling results for the three-parameter weibull distribution , 1980 .

[42]  J. Filliben The Probability Plot Correlation Coefficient Test for Normality , 1975 .

[43]  Brian Peacock,et al.  Statistical Distributions: Forbes/Statistical Distributions 4E , 2010 .

[44]  N. Smirnov Table for Estimating the Goodness of Fit of Empirical Distributions , 1948 .

[45]  R. E. Little,et al.  Statistical design of fatigue experiments , 1978 .

[46]  H. Akaike A new look at the statistical model identification , 1974 .

[47]  Alois Starlinger,et al.  Reliability Analysis of Structural Ceramic Components Using a Three-Parameter Weibull Distribution , 1992 .

[48]  J. Heavens,et al.  Analysis of Brittle Fracture Stress Statistics , 1970 .

[49]  A. Juszczyk,et al.  Analysis of strength data using two- and three-parameter Weibull models , 1998 .

[50]  Horst Rinne,et al.  The Weibull Distribution: A Handbook , 2008 .

[51]  K. Trustrum,et al.  Statistical approach to brittle fracture , 1977 .

[52]  Peter R. Nelson,et al.  Introductory Statistics for Engineering Experimentation , 2003 .

[53]  Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics , 2014 .

[54]  Z. Birnbaum Numerical Tabulation of the Distribution of Kolmogorov's Statistic for Finite Sample Size , 1952 .

[55]  Jee Soo Kim Parameter Estimation in Reliability and Life Span Models , 1991 .

[56]  K. Trustrum,et al.  Applicability of Weibull analysis for brittle materials , 1983 .

[57]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[58]  Jerald F. Lawless,et al.  Statistical Models and Methods for Lifetime Data: Lawless/Statistical , 2002 .

[59]  Bryan Dodson,et al.  The Weibull Analysis Handbook , 1994 .

[60]  Stelios H. Zanakis,et al.  A simulation study of some simple estimators for the three-parameter weibull distribution , 1979 .

[61]  S. Straus Risk Analysis in Engineering and Economics , 2004 .

[62]  T. Dolan,et al.  Risk and Failure Analysis for Improved Performance and Reliability , 1980 .

[63]  S. Looney,et al.  Use of the Correlation Coefficient with Normal Probability Plots , 1985 .

[64]  H. Akaike A Bayesian analysis of the minimum AIC procedure , 1978 .

[65]  R. E. Wheeler Statistical distributions , 1983, APLQ.