Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces

The development of efficient methods to understand and simulate conjugate heat transfer for multi-components systems appears in numerous engineering applications and still a need for industrials, especially in the case of the heat treatment of high-alloy steel by a continuously heating process inside industrial furnaces. The thermal history of the load and the temperature distribution in the furnace are critical for the final microstructure and the mechanical properties of the treated workpieces and can directly determined their final quality in terms of hardness, toughness and resistance. The main objectives of this thesis is then to understand and better model the heat treatment process at the same time in the furnace chamber and within the workpieces under specified furnace geometry, thermal schedule, parts loading design, initial operation conditions, and performance requirements. The Computational Fluid Dynamics (CFD) simulation provides a useful tool to predict the temperature evolution and such processes. In the first part of this work, various stabilized finite element methods required for computing the conjugate heat transfer and the incompressible flows are proposed and analyzed. Two turbulence models, the k-epsilon and the Large Eddy Simulations (LES) models were introduced and used to simulate and take into account the complex turbulent flows inside the furnace chamber. The effect of thermal radiation was appropriately accounted for by means of a volumetric model known as the P1-model. In the latter part of this work, a multidomain approach referred as the immersed volume method (IVM) is introduced and applied to treat the fluid-solid interactions. It is based on the use of an adaptive anisotropic local grid refinement by means of the level-set function to well capture the sharp discontinuities of the fluid-solid interface. The proposed method showed that it is well suited to treat simultaneously the three modes, convective, conductive and radiative heat transfer that may interfere in both the fluid part and the solid part using anisotropic finite element meshes.

[1]  S. Kondaraju,et al.  Hybrid turbulence simulation of spray impingement cooling: The effect of vortex motion on turbulent heat flux , 2009 .

[2]  R. Codina Comparison of some finite element methods for solving the diffusion-convection-reaction equation , 1998 .

[3]  K. Chien,et al.  Predictions of Channel and Boundary-Layer Flows with a Low-Reynolds-Number Turbulence Model , 1982 .

[4]  Danesh K. Tafti,et al.  A time-accurate variable property algorithm for calculating flows with large temperature variations , 2008 .

[5]  Man Young Kim,et al.  A heat transfer model for the analysis of transient heating of the slab in a direct-fired walking beam type reheating furnace , 2007 .

[6]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[7]  R. Reitz,et al.  A temperature wall function formulation for variable-density turbulent flows with application to engine convective heat transfer modeling , 1997 .

[8]  Thierry Coupez,et al.  Using a signed distance function for the simulation of metal forming processes: Formulation of the contact condition and mesh adaptation. From a Lagrangian approach to an Eulerian approach , 2009 .

[9]  J. Koseff,et al.  A dynamic mixed subgrid‐scale model and its application to turbulent recirculating flows , 1993 .

[10]  Tayfun E. Tezduyar,et al.  Finite element stabilization parameters computed from element matrices and vectors , 2000 .

[11]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[12]  Edifici Cl ANALYSIS OF A STABILIZED FINITE ELEMENT APPROXIMATION OF THE TRANSIENT CONVECTION-DIFFUSION EQUATION USING AN ALE FRAMEWORK* , 2006 .

[13]  Claudio Canuto,et al.  Bubble-stabilized spectral methods for the incompressible Navier-Stokes equations , 1996 .

[14]  Ralph Greif,et al.  Natural Convection in Undivided and Partially Divided Rectangular Enclosures , 1981 .

[15]  Raymond Viskanta,et al.  Transient natural convection of low‐Prandtl‐number fluids in a differentially heated cavity , 1991 .

[16]  Arif Masud,et al.  A multiscale/stabilized finite element method for the advection–diffusion equation , 2004 .

[17]  S. Krajnović Large Eddy Simulation of the Flow Over a Three-Dimensional Hill , 2008 .

[18]  R. A. Wallis,et al.  Quenching of aerospace forgings from high temperatures using air-assisted, atomized water sprays , 2002 .

[19]  J. Douglas,et al.  Stabilized mixed methods for the Stokes problem , 1988 .

[20]  K. Lilly The representation of small-scale turbulence in numerical simulation experiments , 1966 .

[21]  R. Codina Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods , 2000 .

[22]  Thierry Coupez,et al.  Object-oriented programming for “fast and easy” development of parallel applications in forming processes simulation , 2003 .

[23]  Angela O. Nieckele,et al.  Numerical Modeling of an Industrial Aluminum Melting Furnace , 2004 .

[24]  P. Cheng Dynamics of a radiating gas with application to flow over a wavy wall. , 1966 .

[25]  M. Sahin,et al.  A novel fully implicit finite volume method applied to the lid‐driven cavity problem—Part I: High Reynolds number flow calculations , 2003 .

[26]  Jaw-Yen Yang,et al.  Implicit Weighted ENO Schemes for the Three-Dimensional Incompressible Navier-Stokes Equations , 1998 .

[27]  Eugenio Oñate,et al.  Modeling incompressible flows at low and high Reynolds numbers via a finite calculus-finite element approach , 2007, J. Comput. Phys..

[28]  Bruno Vergnes,et al.  Méthodes d'interaction fluide-structure pour la simulation multi-échelles des procédés de mélange , 2007 .

[29]  J. Koseff,et al.  Reynolds number and end‐wall effects on a lid‐driven cavity flow , 1989 .

[30]  P. A. Aswatha Narayana,et al.  Airflow analysis in an air conditioning room , 2007 .

[31]  Tor Bjørge,et al.  Simulation of fluid flow and gaseous radiation heat transfer in a natural gas‐fired furnace , 1997 .

[32]  Marek Behr,et al.  Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows , 1993 .

[33]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[34]  Numerical solution of the incompressible Navier-Stokes equations by a three-level finite element method , 2003 .

[35]  R. Verzicco,et al.  Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations , 2000 .

[36]  Man Yeong Ha,et al.  Numerical study of heat transfer and flow of natural convection in an enclosure with a heat-generating conducting body , 1997 .

[37]  Ekkehard Ramm,et al.  A deformation dependent stabilization technique, exemplified by EAS elements at large strains , 2000 .

[38]  S. P. Oliveira,et al.  Pressure bubbles stabilization features in the Stokes problem , 2003 .

[39]  Jae Ryong Lee,et al.  TWO-DIMENSIONAL AND UNSTEADY NATURAL CONVECTION IN A HORIZONTAL ENCLOSURE WITH A SQUARE BODY , 2002 .

[40]  O. Botella,et al.  BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .

[41]  A. Galeão,et al.  A consistent approximate upwind Petrov—Galerkin method for convection-dominated problems , 1988 .

[42]  Ramon Codina,et al.  Dynamic subscales in the finite element approximation of thermally coupled incompressible flows , 2007 .

[43]  Robert L. Street,et al.  The Lid-Driven Cavity Flow: A Synthesis of Qualitative and Quantitative Observations , 1984 .

[44]  Thierry Coupez,et al.  From a Direct Solver To a Parallel Iterative Solver in 3-d fOrming Simulation , 1997, Int. J. High Perform. Comput. Appl..

[45]  C. Farhat,et al.  Bubble Functions Prompt Unusual Stabilized Finite Element Methods , 1994 .

[46]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[47]  Roland Bouffanais,et al.  Large-eddy simulation of the flow in a lid-driven cubical cavity , 2007, 0709.0222.

[48]  Alvaro L. G. A. Coutinho,et al.  Edge‐based finite element implementation of the residual‐based variational multiscale method , 2009 .

[49]  Randolph E. Bank,et al.  A comparison between the mini-element and the Petrov-Galerkin formulations for the generalized Stokes problem , 1990 .

[50]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[51]  Jure Ravnik,et al.  Simulation Of Fluid Flow By BEM , 2010 .

[52]  Alessandro Russo,et al.  CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS , 1994 .

[53]  Robert L. Street,et al.  Visualization Studies of a Shear Driven Three-Dimensional Recirculating Flow , 1984 .

[54]  T. H. Tsang,et al.  Transient solutions for three‐dimensional lid‐driven cavity flows by a least‐squares finite element method , 1995 .

[55]  Robert L. Street,et al.  Three-dimensional lid-driven cavity flow: experiment and simulation , 1983 .

[56]  Guang-Fa Tang,et al.  Numerical visualization of mass and heat transport for conjugate natural convection/heat conduction by streamline and heatline , 2002 .

[57]  Thierry Dubois,et al.  Dynamic multilevel methods and the numerical simulation of turbulence , 1999 .

[58]  G. Mallinson,et al.  Three-dimensional natural convection in a box: a numerical study , 1977, Journal of Fluid Mechanics.

[59]  T. Hughes,et al.  Two classes of mixed finite element methods , 1988 .

[60]  H. B. Keller,et al.  Driven cavity flows by efficient numerical techniques , 1983 .

[61]  F. Brezzi,et al.  A relationship between stabilized finite element methods and the Galerkin method with bubble functions , 1992 .

[62]  Hongxing Yang,et al.  Numerical study of forced turbulent heat convection in a straight square duct , 2009 .

[63]  Jean-Paul Caltagirone,et al.  A numerical continuous model for the hydrodynamics of fluid particle systems , 1999 .

[64]  C. Medaglia,et al.  A Numerical Study , 2005 .

[65]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[66]  Robert L. Street,et al.  Non-linear transient phenomena in a complex recirculating flow: A numerical investigation , 1988 .

[67]  Shunichi Wakitani Numerical Study of Three-Dimensional Oscillatory Natural Convection at Low Prandtl Number in Rectangular Enclosures , 2001 .

[68]  Daniel Rixen,et al.  MINISYMPOSIUM 3: Domain Decomposition Methods Applied to Challenging Engineering Problems , 2007 .

[69]  Nuri Yucel,et al.  Natural convection in partially divided square enclosures , 2003 .

[70]  R. Codina Pressure Stability in Fractional Step Finite Element Methods for Incompressible Flows , 2001 .

[71]  Santiago Badia,et al.  Analysis of a Stabilized Finite Element Approximation of the Transient Convection-Diffusion Equation Using an ALE Framework , 2006, SIAM J. Numer. Anal..

[72]  E. Erturk,et al.  Numerical solutions of 2‐D steady incompressible driven cavity flow at high Reynolds numbers , 2004, ArXiv.

[73]  Volker Gravemeier,et al.  Scale-separating operators for variational multiscale large eddy simulation of turbulent flows , 2006, J. Comput. Phys..

[74]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[75]  Robert L. Street,et al.  Numerical simulation of three‐dimensional flow in a cavity , 1985 .

[76]  G. D. Davis Natural convection of air in a square cavity: A bench mark numerical solution , 1983 .

[77]  C. Gruau,et al.  3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric , 2005 .

[78]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[79]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[80]  Guillaume Houzeaux,et al.  An iteration-by-subdomain overlapping Dirichlet/Robin domain decomposition method for advection-diffusion problems , 2003 .

[81]  Nahmkeon Hur,et al.  A highly-resolved numerical study of turbulent separated flow past a backward-facing step , 1991 .

[82]  Stefan Turek,et al.  On the implementation of the κ-ε turbulence model in incompressible flow solvers based on a finite element discretisation , 2007, Int. J. Comput. Sci. Math..

[83]  Thomas J. R. Hughes,et al.  A multiscale discontinuous Galerkin method with the computational structure of a continuous Galerkin method , 2006 .

[84]  W. Rodi Comparison of LES and RANS calculations of the flow around bluff bodies , 1997 .

[85]  Robert L. Street,et al.  On End Wall Effects in a Lid-Driven Cavity Flow , 1984 .

[86]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[87]  Mutsuto Kawahara,et al.  Optimal shape determination of a body located in incompressible viscous fluid flow , 2007 .

[88]  W. Jones,et al.  The prediction of laminarization with a two-equation model of turbulence , 1972 .

[89]  R. Codina,et al.  Finite element approximation of the modified Boussinesq equations using a stabilized formulation , 2008 .

[90]  Arunn Narasimhan,et al.  Natural convection heat transfer enhancement using adiabatic block: Optimal block size and Prandtl number effect , 2006 .

[91]  John M. House,et al.  EFFECT OF A CENTERED CONDUCTING BODY ON NATURAL CONVECTION HEAT TRANSFER IN AN ENCLOSURE , 1990 .

[92]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[93]  Samuel Paolucci,et al.  The thermoconvective instability of plane poiseuille flow heated from below: A proposed benchmark solution for open boundary flows , 1990 .

[94]  S. Mittal,et al.  Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .

[95]  Denis Flick,et al.  Numerical simulation of air flow and heat transfer in domestic refrigerators , 2007 .

[96]  Manab Kumar Das,et al.  Conjugate natural convection heat transfer in an inclined square cavity containing a conducting block , 2006 .

[97]  Carlos A. Felippa,et al.  Partitioned analysis for coupled mechanical systems , 1988 .

[98]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[99]  M. Modest Radiative heat transfer , 1993 .

[100]  Alessandro Russo,et al.  Bubble stabilization of finite element methods for the linearized incompressible Navier-Stokes equations , 1996 .

[101]  Martin Stynes,et al.  On the Stability of Residual-Free Bubbles for Convection-Diffusion Problemsand their Approximation by a Two-Level Finite Element Method. , 1997 .

[102]  Thierry Coupez,et al.  A Direct 3D Numerical Simulation Code for Extrusion and Mixing Processes , 2009 .

[103]  Thierry Coupez,et al.  Génération de maillage et adaptation de maillage par optimisation locale , 2000 .

[104]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[105]  Klavs F. Jensen,et al.  Three‐Dimensional Flow Effects in Silicon CVD in Horizontal Reactors , 1988 .

[106]  Blanca Bermúdez,et al.  2D thermal/isothermal incompressible viscous flows , 2005 .

[107]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[108]  Chia-Jung Hsu Numerical Heat Transfer and Fluid Flow , 1981 .

[109]  Volker Gravemeier,et al.  A consistent dynamic localization model for large eddy simulation of turbulent flows based on a variational formulation , 2006, J. Comput. Phys..

[110]  O. Basset Simulation numérique d'écoulements multi-fluides sur grille de calcul , 2006 .

[111]  Armando Miguel Awruch,et al.  Finite element analysis of laminar and turbulent flows using LES and subgrid-scale models , 2006 .

[112]  Guglielmo Scovazzi,et al.  A discourse on Galilean invariance, SUPG stabilization, and the variational multiscale framework , 2007 .

[113]  A. J. Baker,et al.  A 3D incompressible Navier–Stokes velocity–vorticity weak form finite element algorithm , 2002 .

[114]  M. Kronbichler,et al.  An algebraic variational multiscale-multigrid method for large eddy simulation of turbulent flow , 2010 .

[115]  Thomas J. R. Hughes,et al.  Stabilization Techniques and Subgrid Scales Capturing , 1996 .

[116]  A. Liaqat,et al.  Conjugate natural convection in a square enclosure containing volumetric sources , 2001 .

[117]  Ramon Codina,et al.  A numerical approximation of the thermal coupling of fluids and solids , 2009 .

[118]  Ramon Codina,et al.  Stabilized finite element method for the transient Navier–Stokes equations based on a pressure gradient projection , 2000 .