Weakly Supervised Localisation for Fetal Ultrasound Images

This paper addresses the task of detecting and localising fetal anatomical regions in 2D ultrasound images, where only image-level labels are present at training, i.e. without any localisation or segmentation information. We examine the use of convolutional neural network architectures coupled with soft proposal layers. The resulting network simultaneously performs anatomical region detection (classification) and localisation tasks. We generate a proposal map describing the attention of the network for a particular class. The network is trained on 85,500 2D fetal Ultrasound images and their associated labels. Labels correspond to six anatomical regions: head, spine, thorax, abdomen, limbs, and placenta. Detection achieves an average accuracy of 90% on individual regions, and show that the proposal maps correlate well with relevant anatomical structures. This work presents itself as a powerful and essential step towards subsequent tasks such as fetal position and pose estimation, organ-specific segmentation, or image-guided navigation.

[1]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[2]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[3]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Yi Zhu,et al.  Soft Proposal Networks for Weakly Supervised Object Localization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[5]  D. Altman,et al.  Intra‐ and interobserver variability in fetal ultrasound measurements , 2012, Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology.

[6]  J. Alison Noble,et al.  Guided Random Forests for Identification of Key Fetal Anatomy and Image Categorization in Ultrasound Scans , 2015, MICCAI.

[7]  Bolei Zhou,et al.  Learning Deep Features for Discriminative Localization , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Konstantinos Kamnitsas,et al.  SonoNet: Real-Time Detection and Localisation of Fetal Standard Scan Planes in Freehand Ultrasound , 2016, IEEE Transactions on Medical Imaging.

[10]  Ivan Laptev,et al.  Is object localization for free? - Weakly-supervised learning with convolutional neural networks , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).