Both geometric morphometric and microsatellite data consistently support the differentiation of the Apis mellifera M evolutionary branch

Traditional morphometrics, allozymes, and mitochondrial data have supported a close relationship between the M branch subspecies A. m. iberiensis and the North African subspecies (A branch). However, studies using nuclear DNA markers have revealed a clear distinction between the latter and the two European M branch subspecies. In help resolve this paradox, we analyzed 663 colonies from six European and African subspecies. A geometric morphometrics approach was applied to the analysis of wing shape, and the results were compared with data of six microsatellite loci. Both data sets were found to be highly consistent and corroborated a marked divergence of West European subspecies from North African ones. This supports the hypothesis that the presence of the African lineage mitotype in Iberian honey bee populations is likely the consequence of secondary introductions, with a minimal African influence within the current Iberian genetic background. Wing geometric morphometrics appears more appropriate than mitochondrial DNA analysis or traditional morphometrics in the screening and identification of the Africanization process.

[1]  I. Miguel,et al.  Gene flow within the M evolutionary lineage of Apis mellifera: role of the Pyrenees, isolation by distance and post-glacial re-colonization routes in the western Europe , 2007, Apidologie.

[2]  J. Cornuet,et al.  Microsatellite variation in honey bee (Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models. , 1995, Genetics.

[3]  L. Harmon,et al.  MULTIVARIATE PHENOTYPIC EVOLUTION AMONG ISLAND AND MAINLAND POPULATIONS OF THE ORNATE DAY GECKO, PHELSUMA ORNATA , 2006, Evolution; international journal of organic evolution.

[4]  L. R. Verma,et al.  Comparative Morphometric Studies on the Indian Honeybee of the North-West Himalayas 1. Tongue and Antenna , 1983 .

[5]  D. Kendall MORPHOMETRIC TOOLS FOR LANDMARK DATA: GEOMETRY AND BIOLOGY , 1994 .

[6]  A. Evin,et al.  Taxonomy, skull diversity and evolution in a species complex of Myotis (Chiroptera: Vespertilionidae): a geometric morphometric appraisal , 2008 .

[7]  F. Bookstein,et al.  Morphometrics in Evolutionary Biology: The Geometry of Size and Shape Change, With Examples from Fishes , 1985 .

[8]  F. Rohlf,et al.  Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks , 1990 .

[9]  M. Drauschke,et al.  Morphometric and genetic changes in a population of Apis mellifera after 34 years of Africanization. , 2009, Genetics and molecular research : GMR.

[10]  J. Cornuet,et al.  Genetic diversity of the west European honey bee (Apis mellifera mellifera and A. m. iberica) II. Microsatellite loci , 1998, Genetics Selection Evolution.

[11]  Martin Frieß,et al.  Fourier Descriptors, Procrustes Superimposition, and Data Dimensionality: An Example of Cranial Shape Analysis in Modern Human Populations , 2005 .

[12]  Gerald R. Smith,et al.  MULTIVARIATE ANALYSIS OF HYBRID FISHES , 1979 .

[13]  P. Sprent,et al.  The mathematics of size and shape. , 1972, Biometrics.

[14]  S. Fuchs,et al.  Ecoclines in the Near East along 36° N latitude in Apis mellifera L. , 2000 .

[15]  W. C. Roberts Heterosis in the Honey Bee as Shown by Morphological Characters in Inbred and Hybrid Bees , 1961 .

[16]  L. F. Costa,et al.  Morphometric differences in a single wing cell can discriminate Apis mellifera racial types , 2006 .

[17]  B. Rannala,et al.  Detecting immigration by using multilocus genotypes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[18]  C. Villemant,et al.  Combining geometric morphometrics with pattern recognition for the investigation of species complexes , 2003 .

[19]  Fred L. Bookstein,et al.  Fluctuating asymmetry in the honey bee, Apis mellifera , 1997 .

[20]  J. Cornuet,et al.  Genetic diversity of the west European honey bee (Apis mellifera mellifera and A. m. iberica) I. Mitochondrial DNA , 1997, Genetics Selection Evolution.

[21]  Prof. Dr. H. R. Hepburn,et al.  Honeybees of Africa , 1998, Springer Berlin Heidelberg.

[22]  Monteiro,et al.  Shape distances, shape spaces and the comparison of morphometric methods. , 2000, Trends in ecology & evolution.

[23]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[24]  M. Meixner,et al.  Morphological and allozyme variability in honey bees from Kenya , 1994 .

[25]  J. Cornuet,et al.  GENECLASS2: a software for genetic assignment and first-generation migrant detection. , 2004, The Journal of heredity.

[26]  N. Koeniger,et al.  The mountain bees of the Kilimanjaro region and their relation to neighbouring bee populations , 1989 .

[27]  L. R. Verma,et al.  Comparative Morphometric Studies on the Indian Honeybee of the North-West Himalayas 2. Wings , 1984 .

[28]  Yves Van de Peer,et al.  zt: A Sofware Tool for Simple and Partial Mantel Tests , 2002 .

[29]  Professor Dr. Friedrich Ruttner Biogeography and Taxonomy of Honeybees , 1987, Springer Berlin Heidelberg.

[30]  J. Louveaux,et al.  BIOMETRICAL-STATISTICAL ANALYSIS OF THE GEOGRAPHIC VARIABILITY OF APIS MELLIFERA L. I. Material and Methods , 1978 .

[31]  J. Cornuet,et al.  THE ORIGIN OF WEST EUROPEAN SUBSPECIES OF HONEYBEES (APIS MELLIFERA): NEW INSIGHTS FROM MICROSATELLITE AND MITOCHONDRIAL DATA , 1998, Evolution; international journal of organic evolution.

[32]  J. Mosimann,et al.  NEW STATISTICAL METHODS FOR ALLOMETRY WITH APPLICATION TO FLORIDA RED‐WINGED BLACKBIRDS , 1979, Evolution; international journal of organic evolution.

[33]  F. Rohlf,et al.  Geometric morphometrics: Ten years of progress following the ‘revolution’ , 2004 .

[34]  T. Rinderer,et al.  Further characterization of honey bees from the Iberian Peninsula by allozyme, morphometric and mtDNA haplotype analyses , 2006 .

[35]  J. Cornuet,et al.  Molecular confirmation of a fourth lineage in honeybees from the Near East , 2000 .

[36]  M. C. Arias,et al.  Molecular phylogenetics of honey bee subspecies (Apis mellifera L.) inferred from mitochondrial DNA sequence. , 1996, Molecular phylogenetics and evolution.

[37]  C. Klingenberg,et al.  Inferring Developmental Modularity from Morphological Integration: Analysis of Individual Variation and Asymmetry in Bumblebee Wings , 2001, The American Naturalist.

[38]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[39]  F. Rohlf Shape Statistics: Procrustes Superimpositions and Tangent Spaces , 1999 .

[40]  Sérgio F. dos Reis,et al.  GEOMETRIC ESTIMATES OF HERITABILITY IN BIOLOGICAL SHAPE , 2002, Evolution; international journal of organic evolution.

[41]  E. Pretorius Using geometric morphometrics to investigate wing dimorphism in males and females of Hymenoptera – a case study based on the genus Tachysphex Kohl (Hymenoptera: Sphecidae: Larrinae) , 2005 .

[42]  L R Monteiro,et al.  Multivariate regression models and geometric morphometrics: the search for causal factors in the analysis of shape. , 1999, Systematic biology.

[43]  J. Cornuet,et al.  Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data , 2001, Heredity.

[44]  Jorge A Lobo,et al.  Maximum likelihood estimates of gene frequencies and racial admixture in Apis mellifera L. (Africanized honeybees) , 1992, Heredity.

[45]  M. C. Arias,et al.  Apis mellifera ruttneri, a new honey bee subspecies from Malta , 1997 .

[46]  J. Cornuet,et al.  Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis , 1992, Molecular ecology.

[47]  D. Smith,et al.  Geographical overlap of two mitochondrial genomes in Spanish honeybees (Apis mellifera iberica). , 1991, The Journal of heredity.

[48]  Adam Tofilski,et al.  Using geometric morphometrics and standard morphometry to discriminate three honeybee subspecies , 2008, Apidologie.

[49]  J. Cornuet,et al.  Mitochondrial DNA variation in Moroccan and Spanish honey bee populations , 1995 .

[50]  J. Darroch,et al.  Canonical and principal components of shape , 1985 .

[51]  A. Clark,et al.  Thrice Out of Africa: Ancient and Recent Expansions of the Honey Bee, Apis mellifera , 2006, Science.

[52]  J. Cheverud,et al.  Cranial evolution in sakis (Pithecia, Platyrrhini) I: interspecific differentiation and allometric patterns. , 2004, American journal of physical anthropology.

[53]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[54]  Yoshio Tateno,et al.  Accuracy of estimated phylogenetic trees from molecular data , 1983, Journal of Molecular Evolution.

[55]  T. Daufresne,et al.  Wing Venation Variability in Monarthropalpus buxi (Diptera, Cecidomyiidae) and the Quaternary Coevolution of Box (Buxus sempervirens L.) and Its Midge , 1996 .

[56]  D. Smith,et al.  Allozyme polymorphisms in Spanish honeybees (Apis mellifera iberica). , 1995, The Journal of heredity.

[57]  J. M. Cornuet,et al.  Etude biométrique de colonies d'abeilles d'Espagne et du Portugal , 1989 .

[58]  S. Gould ALLOMETRY AND SIZE IN ONTOGENY AND PHYLOGENY , 1966, Biological reviews of the Cambridge Philosophical Society.

[59]  H. Hepburn,et al.  Morphometric and pheromonal analyses of Apis mellifera L along a transect from the Sahara to the Pyrenees , 1996 .

[60]  J. Diniz‐Filho,et al.  Phylogeographical autocorrelation of phenotypic evolution in honey bees (Apis mellifera L.) , 1999, Heredity.

[61]  Martin Drauschke,et al.  Identification of Africanized honey bees through wing morphometrics: two fast and efficient procedures , 2008, Apidologie.

[62]  F. Cánovas,et al.  Geographical patterns of mitochondrial DNA variation in Apis mellifera iberiensis (Hymenoptera: Apidae) , 2007 .