Recent Results on the Algebraic Approach to the CSP

We describe an algebraic approach to the constraint satisfaction problem (CSP) and present recent results on the CSP that make use of, in an essential way, this algebraic framework.

[1]  Tomás Feder,et al.  Monotone monadic SNP and constraint satisfaction , 1993, STOC.

[2]  Peter Jeavons,et al.  Tractable constraints closed under a binary operation , 2000 .

[3]  Víctor Dalmau,et al.  Generalized majority-minority operations are tractable , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[4]  Ralph Freese,et al.  On the Complexity of Some Maltsev Conditions , 2009, Int. J. Algebra Comput..

[5]  Peter Jeavons FINITE SEMIGROUPS IMPOSING TRACTABLE CONSTRAINTS , 2002 .

[6]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[7]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[8]  Bradd Hart,et al.  Lectures on algebraic model theory , 2001 .

[9]  Andrei A. Bulatov A graph of a relational structure and constraint satisfaction problems , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[10]  Justin Pearson,et al.  Constraints and universal algebra , 1998, Annals of Mathematics and Artificial Intelligence.

[11]  D. Hobby,et al.  The structure of finite algebras , 1988 .

[12]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraint satisfaction problems on a 3-element set , 2006, JACM.

[13]  Michel Rigo,et al.  Abstract numeration systems and tilings , 2005 .

[14]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[15]  P. Jeavons Algebraic structures in combinatorial problems , 2001 .

[16]  Denis Thérien,et al.  Tractable Clones of Polynomials over Semigroups , 2005, CP.

[17]  Andrei A. Bulatov,et al.  Dualities for Constraint Satisfaction Problems , 2008, Complexity of Constraints.

[18]  Hubie Chen The expressive rate of constraints , 2005, Annals of Mathematics and Artificial Intelligence.

[19]  R. McKenzie,et al.  Varieties with few subalgebras of powers , 2009 .

[20]  M. Maróti,et al.  Existence theorems for weakly symmetric operations , 2008 .

[21]  M. Valeriote A Subalgebra Intersection Property for Congruence Distributive Varieties , 2009, Canadian Journal of Mathematics.

[22]  Klaus Denecke,et al.  Tame Congruence Theory , 2018, Universal Algebra and Applications in Theoretical Computer Science.

[23]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[24]  R. McKenzie,et al.  Few subpowers, congruence distributivity and near-unanimity terms , 2008 .

[25]  Andrei A. Bulatov H-Coloring dichotomy revisited , 2005, Theor. Comput. Sci..

[26]  Pascal Tesson,et al.  Universal algebra and hardness results for constraint satisfaction problems , 2007, Theor. Comput. Sci..

[27]  Víctor Dalmau Generalized Majority-Minority Operations are Tractable , 2005, LICS.

[28]  Peter van Beek,et al.  Principles and Practice of Constraint Programming - CP 2005, 11th International Conference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings , 2005, CP.

[29]  Pawel M. Idziak,et al.  Tractability and learnability arising from algebras with few subpowers , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[30]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[31]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[32]  Joel Berman,et al.  The set of types of a finitely generated variety , 1993, Discret. Math..

[33]  K. A. Baker,et al.  Polynomial interpolation and the Chinese Remainder Theorem for algebraic systems , 1975 .

[34]  Víctor Dalmau,et al.  A new tractable class of constraint satisfaction problems , 2005, Annals of Mathematics and Artificial Intelligence.

[35]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[36]  B. Larose,et al.  Bounded width problems and algebras , 2007 .

[37]  Claude Tardif,et al.  A Characterisation of First-Order Constraint Satisfaction Problems , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[38]  Ágnes Szendrei,et al.  Clones in universal algebra , 1986 .

[39]  Neil Immerman,et al.  The Complexity of Satisfiability Problems: Refining Schaefer's Theorem , 2005, MFCS.

[40]  Martin C. Cooper,et al.  Constraints, Consistency and Closure , 1998, Artif. Intell..

[41]  Andrei A. Bulatov,et al.  Mal'tsev constraints are tractable , 2002, Electron. Colloquium Comput. Complex..

[42]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[43]  Marc Gyssens,et al.  Closure properties of constrains , 1997 .

[44]  A. Bulatov Combinatorial problems raised from 2-semilattices , 2006 .

[45]  Andrei A. Bulatov,et al.  A Simple Algorithm for Mal'tsev Constraints , 2006, SIAM J. Comput..

[46]  Anuj Dawar,et al.  Affine systems of equations and counting infinitary logic , 2009 .

[47]  Heribert Vollmer,et al.  Complexity of Constraints - An Overview of Current Research Themes [Result of a Dagstuhl Seminar] , 2008, Complexity of Constraints.