Towards 3-Dimensional Rewriting Theory

String rewriting systems have proved very useful to study monoids. In good cases, they give finite presentations of monoids, allowing computations on those and their manipulation by a computer. Even better, when the presentation is confluent and terminating, they provide one with a notion of canonical representative of the elements of the presented monoid. Polygraphs are a higher-dimensional generalization of this notion of presentation, from the setting of monoids to the much more general setting of n-categories. One of the main purposes of this article is to give a progressive introduction to the notion of $\higher-dimensional\ rewriting\ system$provided by polygraphs, and describe its links with classical rewriting theory, string and term rewriting systems in particular. After introducing the general setting, we will be interested in proving local confluence for polygraphs presenting 2-categories and introduce a framework in which a finite 3-dimensional rewriting system admits a finite number of critical pairs

[1]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[2]  Ross Street,et al.  Limits indexed by category-valued 2-functors , 1976 .

[3]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[4]  S. Mimram Representing 2-Dimensional Critical Pairs , 2010 .

[5]  Samuel Mimram Sémantique des jeux asynchrones et réécriture 2-dimensionnelle. (Asynchronous Game Semantics and 2-dimensional Rewriting Systems) , 2008 .

[6]  R. Street,et al.  Review of the elements of 2-categories , 1974 .

[7]  Yves Guiraud,et al.  Two polygraphic presentations of Petri nets , 2006, Theor. Comput. Sci..

[8]  Samuel Mimram,et al.  The Structure of First-Order Causality , 2009, 2009 24th Annual IEEE Symposium on Logic In Computer Science.

[9]  Tom Leinster Higher Operads, Higher Categories , 2003 .

[10]  Spherical Categories , 1993, hep-th/9310164.

[11]  Philippe Malbos,et al.  Higher-dimensional categories with finite derivation type , 2008, 0810.1442.

[12]  Anne Preller,et al.  Free compact 2-categories , 2007, Mathematical Structures in Computer Science.

[13]  John C. Baez,et al.  Physics, Topology, Logic and Computation: A Rosetta Stone , 2009, 0903.0340.

[14]  Samuel Mimram,et al.  Computing Critical Pairs in 2-Dimensional Rewriting Systems , 2010, RTA.

[15]  F. W. Lawvere,et al.  Some algebraic problems in the context of functorial semantics of algebraic theories , 1968 .

[16]  Yves Lafont,et al.  Towards an algebraic theory of Boolean circuits , 2003 .

[17]  Albert Burroni,et al.  Higher-Dimensional Word Problems with Applications to Equational Logic , 1993, Theor. Comput. Sci..

[18]  Ross Street,et al.  Coherence of tricategories , 1995 .

[19]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[20]  R. Ho Algebraic Topology , 2022 .

[21]  Yves Guiraud,et al.  Termination orders for 3-dimensional rewriting , 2006, ArXiv.

[22]  Yves Guiraud The three dimensions of proofs , 2006, Ann. Pure Appl. Log..

[23]  Ross Street,et al.  Braided Tensor Categories , 1993 .

[24]  Yves Lafont,et al.  Church-Rooser property and homology of monoids , 1991, Mathematical Structures in Computer Science.

[25]  Chang Liu,et al.  Term rewriting and all that , 2000, SOEN.

[26]  Jean-Jacques Lévy,et al.  An abstract standardisation theorem , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[27]  Gordon D. Plotkin,et al.  Abstract syntax and variable binding , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[28]  Michael Batanin,et al.  Monoidal Globular Categories As a Natural Environment for the Theory of Weakn-Categories☆ , 1998 .

[29]  Paul-André Melliès CATEGORICAL SEMANTICS OF LINEAR LOGIC , 2009 .

[30]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[31]  Yves Guiraud Présentations d'opérades et systèmes de réécriture , 2004 .

[32]  Jean Goubault-Larrecq,et al.  Logical Relations for Monadic Types , 2005 .

[33]  Craig C. Squier,et al.  Word problems and a homological niteness condition for monoids , 1987 .

[34]  A. Power,et al.  A 2-categorical pasting theorem , 1990 .