An O(n3 (loglogn/logn)5/4) Time Algorithm for All Pairs Shortest Paths

We present an O(n3 (loglogn/logn)5/4) time algorithm for all pairs shortest paths. This algorithm improves on the best previous result of O(n3/logn) time.

[1]  Uri Zwick,et al.  A Slightly Improved Sub-Cubic Algorithm for the All Pairs Shortest Paths Problem with Real Edge Lengths , 2004, ISAAC.

[2]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[3]  Tadao Takaoka An O(n3loglogn/logn) time algorithm for the all-pairs shortest path problem , 2005, Inf. Process. Lett..

[4]  Susanne Albers,et al.  Improved parallel integer sorting without concurrent writing , 1992, SODA '92.

[5]  Raimund Seidel,et al.  On the All-Pairs-Shortest-Path Problem in Unweighted Undirected Graphs , 1995, J. Comput. Syst. Sci..

[6]  Kenneth E. Batcher,et al.  Sorting networks and their applications , 1968, AFIPS Spring Joint Computing Conference.

[7]  Alfred V. Aho,et al.  Data Structures and Algorithms , 1983 .

[8]  Tadao Takaoka,et al.  A New Upper Bound on the Complexity of the All Pairs Shortest Path Problem , 1991, Inf. Process. Lett..

[9]  Timothy M. Chan All-Pairs Shortest Paths with Real Weights in O(n3/log n) Time , 2005, WADS.

[10]  Yijie Han,et al.  Improved algorithm for all pairs shortest paths , 2004, Inf. Process. Lett..

[11]  Zvi Galil,et al.  All Pairs Shortest Distances for Graphs with Small Integer Length Edges , 1997, Inf. Comput..

[12]  Seth Pettie,et al.  A Shortest Path Algorithm for Real-Weighted Undirected Graphs , 2005, SIAM J. Comput..

[13]  Piotr Sankowski,et al.  Shortest Paths in Matrix Multiplication Time , 2005, ESA.

[14]  Yijie Han,et al.  Achieving O(n3/log n) Time for All Pairs Shortest Paths by Using a Smaller Table , 2006, CATA.

[15]  Michael L. Fredman,et al.  New Bounds on the Complexity of the Shortest Path Problem , 1976, SIAM J. Comput..

[16]  Mikkel Thorup,et al.  Undirected single-source shortest paths with positive integer weights in linear time , 1999, JACM.

[17]  Seth Pettie,et al.  A Faster All-Pairs Shortest Path Algorithm for Real-Weighted Sparse Graphs , 2002, ICALP.

[18]  W. Dobosiewicz A more efficient algorithm for the min-plus multiplication , 1990 .

[19]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1987, JACM.

[20]  Raphael Yuster,et al.  Answering distance queries in directed graphs using fast matrix multiplication , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[21]  Uri Zwick,et al.  All pairs shortest paths using bridging sets and rectangular matrix multiplication , 2000, JACM.