The robust shortest path problem with interval data via Benders decomposition

Abstract.Many real problems can be modelled as robust shortest path problems on digraphs with interval costs, where intervals represent uncertainty about real costs and a robust path is not too far from the shortest path for each possible configuration of the arc costs.In this paper we discuss the application of a Benders decomposition approach to this problem.Computational results confirm the efficiency of the new algorithm. It is able to clearly outperform state-of-the-art algorithms on many classes of networks. For the remaining classes we identify the most promising algorithm among the others, depending of the characteristics of the networks.

[1]  Igor Averbakh,et al.  Interval data minmax regret network optimization problems , 2004, Discret. Appl. Math..

[2]  A. M. Geoffrion,et al.  Multicommodity Distribution System Design by Benders Decomposition , 1974 .

[3]  Luis C. Dias,et al.  Shortest path problems with partial information: Models and algorithms for detecting dominance , 2000, Eur. J. Oper. Res..

[4]  Mathematical programming study 5 and 6 , 1977 .

[5]  Jean-François Cordeau,et al.  Benders Decomposition for Simultaneous Aircraft Routing and Crew Scheduling , 2000, Transp. Sci..

[6]  M. D. Devine,et al.  A Modified Benders' Partitioning Algorithm for Mixed Integer Programming , 1977 .

[7]  Roberto Montemanni,et al.  An exact algorithm for the robust shortest path problem with interval data , 2004, Comput. Oper. Res..

[8]  David K. Smith Network Flows: Theory, Algorithms, and Applications , 1994 .

[9]  Thomas L. Magnanti,et al.  Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria , 1981, Oper. Res..

[10]  Thomas L. Magnanti,et al.  Tailoring Benders decomposition for uncapacitated network design , 1986 .

[11]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[12]  Roberto Montemanni,et al.  A branch and bound algorithm for the robust shortest path problem with interval data , 2004, Oper. Res. Lett..

[13]  Anthony V. Fiacco,et al.  Mathematical programming study 21 , 1985, Mathematical programming.

[14]  J. F. Benders Partitioning procedures for solving mixed-variables programming problems , 1962 .

[15]  Robert Richardson An Optimization Approach to Routing Aircraft , 1976 .

[16]  A. M. Geoffrion Generalized Benders decomposition , 1972 .

[17]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[18]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[19]  Gang Yu,et al.  On the robust shortest path problem , 1998 .

[20]  Jean-François Cordeau,et al.  A Benders Decomposition Approach for the Locomotive and Car Assignment Problem , 1998, Transp. Sci..

[21]  Roberto Montemanni,et al.  A comparison of two new exact algorithms for the robust shortest path problem , 2004 .