Effect of Surface Charge on the Resistive Pulse Waveshape during Particle Translocation through Glass Nanopores

This paper describes a fundamental study of the effect of electrostatic interactions on the resistive pulse waveshape associated with translocation of charged nanoparticles through a conical-shaped, charged glass nanopore. In contrast to single-peak resistive pulses normally associated with resistive-pulse methods, biphasic pulses, in which the normal current decrease is preceded by a current increase, were observed in the current–time recordings when a high negative potential (lower than −0.4 V) is applied between the pore interior and the external solution. The biphasic pulse is a consequence of the offsetting effects of an increased ion conductivity induced by the surface charge of the translocating particle and the current decrease due to the volume exclusion of electrolyte solution by the particle. Finite-element simulations based on the coupled Poisson–Nernst–Planck equations and a particle trajectory calculation successfully capture the evolution of the waveshape from a single resistive pulse to a ...

[1]  A. Bund,et al.  The Role of Nanopore Geometry for the Rectification of Ionic Currents , 2011 .

[2]  M. Trau,et al.  Simultaneous size and ζ-potential measurements of individual nanoparticles in dispersion using size-tunable pore sensors. , 2012, ACS nano.

[3]  Ryan J. White,et al.  Bench-top method for fabricating glass-sealed nanodisk electrodes, glass nanopore electrodes, and glass nanopore membranes of controlled size. , 2007, Analytical chemistry.

[4]  R. Kawano,et al.  Quartz nanopore membranes for suspended bilayer ion channel recordings. , 2010, Analytical Chemistry.

[5]  H. White,et al.  Pressure-Driven Nanoparticle Transport across Glass Membranes Containing a Conical-Shaped Nanopore , 2011 .

[6]  U. Keyser,et al.  Salt dependence of ion transport and DNA translocation through solid-state nanopores. , 2006, Nano letters.

[7]  Z. Siwy,et al.  Particle deformation and concentration polarization in electroosmotic transport of hydrogels through pores. , 2013, ACS nano.

[8]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[9]  H. White,et al.  Electrical signature of the deformation and dehydration of microgels during translocation through nanopores , 2011 .

[10]  Z. Siwy,et al.  Engineered voltage-responsive nanopores. , 2010, Chemical Society reviews.

[11]  Susan Daniel,et al.  Ionic conductivity of the aqueous layer separating a lipid bilayer membrane and a glass support. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[12]  L. A. Baker,et al.  Rectification of ion current in nanopipettes by external substrates. , 2013, ACS nano.

[13]  Juan Liu,et al.  Transmembrane potential across single conical nanopores and resulting memristive and memcapacitive ion transport. , 2012, Journal of the American Chemical Society.

[14]  Wen-Jie Lan,et al.  Diffusional motion of a particle translocating through a nanopore. , 2012, ACS nano.

[15]  J. P. Guerrette,et al.  Scan-rate-dependent current rectification of cone-shaped silica nanopores in quartz nanopipettes. , 2010, Journal of the American Chemical Society.

[16]  Cees Dekker,et al.  Measurement of the docking time of a DNA molecule onto a solid-state nanopore. , 2012, Nano letters.

[17]  Royce W Murray,et al.  Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. , 2008, Chemical reviews.

[18]  Deyu Li,et al.  DNA translocation in inorganic nanotubes. , 2005, Nano letters.

[19]  Z. Siwy,et al.  Conical-nanotube ion-current rectifiers: the role of surface charge. , 2004, Journal of the American Chemical Society.

[20]  Wen-Jie Lan,et al.  Pressure-dependent ion current rectification in conical-shaped glass nanopores. , 2011, Journal of the American Chemical Society.

[21]  Long Luo,et al.  Tunable negative differential electrolyte resistance in a conical nanopore in glass. , 2012, ACS nano.

[22]  Stephen W. Feldberg,et al.  Current Rectification at Quartz Nanopipet Electrodes , 1997 .

[23]  Javier Cervera,et al.  Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and experiment. , 2010, Journal of the American Chemical Society.

[24]  Z. Siwy,et al.  Nanopore analytics: sensing of single molecules. , 2009, Chemical Society reviews.

[25]  Richard M Crooks,et al.  A carbon nanotube-based coulter nanoparticle counter. , 2004, Accounts of chemical research.

[26]  Bo Zhang,et al.  Nanoparticle transport in conical-shaped nanopores. , 2011, Analytical chemistry.

[27]  Shizhi Qian,et al.  Effects of Electroosmotic Flow on Ionic Current Rectification in Conical Nanopores , 2010 .

[28]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[29]  Javier Cervera,et al.  Ionic conduction, rectification, and selectivity in single conical nanopores. , 2006, The Journal of chemical physics.

[30]  Wei Guo,et al.  Asymmetric ion transport through ion-channel-mimetic solid-state nanopores. , 2013, Accounts of chemical research.

[31]  Rashid Bashir,et al.  DNA-Mediated Fluctuations in Ionic Current through Silicon Oxide Nanopore Channels. Nano Lett., 4(8), 1551-1556 , 2004 .

[32]  Charles R. Martin,et al.  Resistive-Pulse SensingFrom Microbes to Molecules , 2000 .

[33]  Ryan J. White,et al.  Random walk on a leash: a simple single-molecule diffusion model for surface-tethered redox molecules with flexible linkers. , 2013, Journal of the American Chemical Society.

[34]  Andreas Bund,et al.  Ion current rectification at nanopores in glass membranes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[35]  Stephen C Jacobson,et al.  Transport and sensing in nanofluidic devices. , 2011, Annual review of analytical chemistry.

[36]  Niya Sa,et al.  Rectification of nanopores at surfaces. , 2011, Journal of the American Chemical Society.

[37]  Z. Siwy,et al.  Ion‐Current Rectification in Nanopores and Nanotubes with Broken Symmetry , 2006 .