Programmable four-photon graph states on a silicon chip

Future quantum computers require a scalable architecture on a scalable technology—one that supports millions of high-performance components. Measurement-based protocols, using graph states, represent the state of the art in architectures for optical quantum computing. Silicon photonics technology offers enormous scale and proven quantum optical functionality. Here we produce and encode photonic graph states on a mass-manufactured chip, using four on-chip-generated photons. We programmably generate all types of four-photon graph state, implementing a basic measurement-based protocol, and measure high-visibility heralded interference of the chip’s four photons. We develop a model of the device and bound the dominant sources of error using Bayesian inference. The combination of measurement-based quantum computation, silicon photonics technology, and on-chip multi-pair sources will be a useful one for future scalable quantum information processing with photons. Measurement-based quantum computing is one of the most promising approaches for photon-based universal quantum computation. Here, the authors realise a universal encoder of four-photon graph states on a silicon chip, and use Bayesian inference methods to characterise the error sources.

[1]  Tommaso Lunghi,et al.  Quantum photonics at telecom wavelengths based on lithium niobate waveguides , 2016, 1608.01100.

[2]  James C. Gates,et al.  Chip-based array of near-identical, pure, heralded single-photon sources , 2016, 1603.06984.

[3]  J. Eisert,et al.  Entanglement in Graph States and its Applications , 2006, quant-ph/0602096.

[4]  I. Walmsley,et al.  8×8 Programmable Quantum Photonic Processor based on Silicon Nitride Waveguides , 2018 .

[5]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[6]  Nicolò Spagnolo,et al.  Suppression law of quantum states in a 3D photonic fast Fourier transform chip , 2016, Nature Communications.

[7]  Sébastien Tanzilli,et al.  On-chip generation of heralded photon-number states , 2016, Scientific Reports.

[8]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[9]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[10]  D. Markham,et al.  Graph states for quantum secret sharing , 2008, 0808.1532.

[11]  Marek Zukowski,et al.  Experimental violation of local realism by four-photon Greenberger-Horne-Zeilinger entanglement. , 2003, Physical review letters.

[12]  C. M. Natarajan,et al.  Chip-based quantum key distribution , 2015, Nature Communications.

[13]  Hossein Hashemi,et al.  A Monolithically Integrated Large-Scale Optical Phased Array in Silicon-on-Insulator CMOS , 2018, IEEE Journal of Solid-State Circuits.

[14]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[15]  Mark G. Thompson,et al.  Hard limits on the postselectability of optical graph states , 2018, Quantum Science and Technology.

[16]  Laura Mančinska,et al.  Multidimensional quantum entanglement with large-scale integrated optics , 2018, Science.

[17]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[18]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[19]  Fabio Sciarrino,et al.  Path-polarization hyperentangled and cluster states of photons on a chip , 2016, Light: Science & Applications.

[20]  P. Alsing,et al.  Truly unentangled photon pairs without spectral filtering. , 2017, Optics letters.

[21]  Mercedes Gimeno-Segovia,et al.  From Three-Photon Greenberger-Horne-Zeilinger States to Ballistic Universal Quantum Computation. , 2014, Physical review letters.

[22]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[23]  C. M. Natarajan,et al.  On-chip quantum interference between silicon photon-pair sources , 2013, Nature Photonics.

[24]  Guang-Can Guo,et al.  Experimental generation of a high-fidelity four-photon linear cluster state , 2016, 1610.00232.

[25]  K.J.Resch,et al.  Experimental One-Way Quantum Computing , 2005, quant-ph/0503126.

[26]  Bei Zeng,et al.  16-qubit IBM universal quantum computer can be fully entangled , 2018, npj Quantum Information.

[27]  Terry Rudolph,et al.  Why I am optimistic about the silicon-photonic route to quantum computing , 2016, 1607.08535.

[28]  Gregory R. Steinbrecher,et al.  Quantum transport simulations in a programmable nanophotonic processor , 2015, Nature Photonics.

[29]  I. Walmsley,et al.  8×8 reconfigurable quantum photonic processor based on silicon nitride waveguides. , 2018, Optics express.

[30]  K Rottwitt,et al.  Engineering spectrally unentangled photon pairs from nonlinear microring resonators by pump manipulation. , 2017, Optics letters.

[31]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[32]  Michael R. Watts,et al.  Large-scale nanophotonic phased array , 2013, Nature.

[33]  M. S. Tame,et al.  Experimental demonstration of a graph state quantum error-correction code , 2014, Nature Communications.

[34]  Mercedes Gimeno-Segovia,et al.  Relative multiplexing for minimising switching in linear-optical quantum computing , 2017, 1701.03306.

[35]  Damien Bonneau,et al.  On-chip quantum interference with heralded photons from two independent micro-ring resonator sources in silicon photonics. , 2017, Optics express.

[36]  David Barber,et al.  Bayesian reasoning and machine learning , 2012 .

[37]  Om,et al.  8×8 reconfigurable quantum photonic processor based on silicon nitride waveguides , 2019 .

[38]  Dirk Schwalm,et al.  Coulomb-explosion imaging of CH2 + : Target-polarization effects and bond-angle distribution , 2004 .

[39]  Philip Walther,et al.  Experimental violation of a cluster state bell inequality. , 2005, Physical review letters.

[41]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .

[42]  M. Lipson,et al.  Generation of correlated photons in nanoscale silicon waveguides. , 2006, Optics express.

[44]  Damien Bonneau,et al.  Silicon Quantum Photonics , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[45]  Andreas Christ,et al.  Probing multimode squeezing with correlation functions , 2010, 1012.0262.