Analysis and Design of Interconnected Systems: A Systems and Control Perspective

Hybrid and cyber-physical systems are at the intersection of the theory of concurrent processes and of systems and control theory. This paper reviews some ideas from systems and control theory, which can be considered to be fruitful for the study of such systems. Particular emphasis is on the use of dissipative systems theory for the analysis of interconnected systems, and on the ‘control by interconnection’ problem using an extension of the notion of (bi-)simulation to the realm of continuous dynamics. Furthermore, the paper surveys a definition of hybrid systems, which treats the continuous and discrete dynamics on an equal footing.

[1]  J. Willems,et al.  Synthesis of dissipative systems using quadratic differential forms: part II , 2002, IEEE Trans. Autom. Control..

[2]  The converse of the passivity and small-gain theorem for nonlinear input-output maps , 2017 .

[3]  J. Willems On interconnections, control, and feedback , 1997, IEEE Trans. Autom. Control..

[4]  Arjan van der Schaft,et al.  Achievable behavior of general systems , 2003, Syst. Control. Lett..

[5]  Ricardo G. Sanfelice,et al.  Hybrid Dynamical Systems: Modeling, Stability, and Robustness , 2012 .

[6]  Arjan van der Schaft,et al.  Port-Hamiltonian Systems Theory: An Introductory Overview , 2014, Found. Trends Syst. Control..

[7]  Arjan van der Schaft,et al.  On the converse of the passivity and small-gain theorems for input-output maps , 2017, Autom..

[8]  Arjan van der Schaft,et al.  Bisimulation of Dynamical Systems , 2004, HSCC.

[9]  Masayuki Fujita,et al.  Passivity-Based Control and Estimation in Networked Robotics , 2015 .

[10]  H. Ito,et al.  On a small gain theorem for ISS networks in dissipative Lyapunov form , 2009, ECC.

[11]  Thomas A. Henzinger,et al.  Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems , 1992, Hybrid Systems.

[12]  Neville Hogan,et al.  Robust control of dynamically interacting systems , 1988 .

[13]  Arjan van der Schaft,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[14]  Arjan van der Schaft,et al.  Equivalence of hybrid dynamical systems , 2004 .

[15]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[16]  A. J. van der Schaft,et al.  Equivalence of switching linear systems by bisimulation , 2006 .

[17]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[18]  George J. Pappas Bisimilar linear systems , 2003, Autom..

[19]  Diana Bohm,et al.  L2 Gain And Passivity Techniques In Nonlinear Control , 2016 .

[20]  Arjan van der Schaft,et al.  The Achievable Dynamics via Control by Interconnection , 2011, IEEE Transactions on Automatic Control.

[21]  A. J. van der Schaft Equivalence of dynamical systems by bisimulation , 2004, IEEE Transactions on Automatic Control.

[22]  Stefano Stramigioli,et al.  Energy-Aware Robotics , 2015 .

[23]  Arjan van der Schaft,et al.  Converse passivity theorems , 2017, 1701.00249.

[24]  Noorma Yulia Megawati,et al.  Bisimulation equivalence of differential-algebraic systems , 2018, Int. J. Control.

[25]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.