TRANSIT AND ECLIPSE ANALYSES OF THE EXOPLANET HD 149026b USING BLISS MAPPING

The dayside of HD 149026b is near the edge of detectability by the Spitzer Space Telescope. We report on 11 secondary-eclipse events at 3.6, 4.5, 3 × 5.8, 4 × 8.0, and 2 × 16 μm plus three primary-transit events at 8.0 μm. The eclipse depths from jointly fit models at each wavelength are 0.040% ± 0.003% at 3.6 μm, 0.034% ± 0.006% at 4.5 μm, 0.044% ± 0.010% at 5.8 μm, 0.052% ± 0.006% at 8.0 μm, and 0.085% ± 0.032% at 16 μm. Multiple observations at the longer wavelengths improved eclipse-depth signal-to-noise ratios by up to a factor of two and improved estimates of the planet-to-star radius ratio (Rp /R = 0.0518 ± 0.0006). We also identify no significant deviations from a circular orbit and, using this model, report an improved period of 2.8758916 ± 0.0000014 days. Chemical-equilibrium models find no indication of a temperature inversion in the dayside atmosphere of HD 149026b. Our best-fit model favors large amounts of CO and CO2, moderate heat redistribution (f = 0.5), and a strongly enhanced metallicity. These analyses use BiLinearly-Interpolated Subpixel Sensitivity (BLISS) mapping, a new technique to model two position-dependent systematics (intrapixel variability and pixelation) by mapping the pixel surface at high resolution. BLISS mapping outperforms previous methods in both speed and goodness of fit. We also present an orthogonalization technique for linearly correlated parameters that accelerates the convergence of Markov chains that employ the Metropolis random walk sampler. The electronic supplement contains light-curve files.

[1]  M. Marley,et al.  Line and Mean Opacities for Ultracool Dwarfs and Extrasolar Planets , 2007, 0706.2374.

[2]  David Lafreniere,et al.  NEAR-INFRARED THERMAL EMISSION FROM THE HOT JUPITER TrES-2b: GROUND-BASED DETECTION OF THE SECONDARY ECLIPSE , 2010, 1005.3027.

[3]  M. Holman,et al.  Five New Transits of the Super-Neptune HD 149026b , 2007, 0711.1888.

[4]  I. Ribas,et al.  Primary Transit of the Planet HD 189733b at 3.6 and 5.8 μm , 2007, 0711.2142.

[5]  A. Gámez,et al.  Nonlinear dimensionality reduction in climate data , 2004 .

[6]  A. Pál Properties of analytic transit light-curve models , 2008 .

[7]  C. G. Tinney,et al.  Catalog of nearby exoplanets , 2006 .

[8]  Leslie Hebb,et al.  ON THE ORBIT OF EXOPLANET WASP-12b , 2010, 1003.2763.

[9]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[10]  J. Heyl,et al.  Using long-term transit timing to detect terrestrial planets , 2006, astro-ph/0610267.

[11]  E. Agol,et al.  A PRECISE ESTIMATE OF THE RADIUS OF THE EXOPLANET HD 149026b FROM SPITZER PHOTOMETRY , 2008, 0805.0777.

[12]  A. Szalay,et al.  Spectral classification of galaxies: An Orthogonal approach , 1994, astro-ph/9411044.

[13]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[14]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[15]  Mark S. Marley,et al.  Analysis of Spitzer Spectra of Irradiated Planets: Evidence for Water Vapor? , 2007, 0705.2457.

[16]  Á. Giménez,et al.  A revision of the ephemeris-curve equations for eclipsing binaries with apsidal motion , 1995 .

[17]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[18]  Drake Deming,et al.  The hottest planet , 2007, Nature.

[19]  S. Seager,et al.  ALIEN MAPS OF AN OCEAN-BEARING WORLD , 2009, 0905.3742.

[20]  B. Fegley,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars: I. Carbon, Nitrogen, and Oxygen , 2002 .

[21]  Comparative Planetary Atmospheres: Models of TrES-1 and HD 209458b , 2005, astro-ph/0505359.

[22]  Joshua N. Winn,et al.  NEAR-INFRARED TRANSIT PHOTOMETRY OF THE EXOPLANET HD 149026b , 2009, 0902.1542.

[23]  R. Paul Butler,et al.  On the Eccentricity of HD 209458b , 2005 .

[24]  I. Hubeny,et al.  Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data , 2007, 0709.4080.

[25]  Stephen P. Brooks,et al.  Markov chain Monte Carlo method and its application , 1998 .

[26]  K. Lodders,et al.  ATMOSPHERIC SULFUR PHOTOCHEMISTRY ON HOT JUPITERS , 2009, 0903.1663.

[27]  K. Rice,et al.  Protostars and Planets V , 2005 .

[28]  Drake Deming,et al.  A SPITZER TRANSMISSION SPECTRUM FOR THE EXOPLANET GJ 436b, EVIDENCE FOR STELLAR VARIABILITY, AND CONSTRAINTS ON DAYSIDE FLUX VARIATIONS , 2011, 1104.2901.

[29]  P. J. Schinder,et al.  Temperatures, Winds, and Composition in the Saturnian System , 2005, Science.

[30]  David Charbonneau,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: COUPLED RADIATIVE-DYNAMICAL GENERAL CIRCULATION MODEL SIMULATIONS OF HD 189733b and HD 209458b , 2008, 0809.2089.

[31]  William H. Press,et al.  Numerical Recipes with Source Code CD-ROM 3rd Edition: The Art of Scientific Computing , 2007 .

[32]  Adam Burrows,et al.  CAN TiO EXPLAIN THERMAL INVERSIONS IN THE UPPER ATMOSPHERES OF IRRADIATED GIANT PLANETS? , 2009, 0902.3995.

[33]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[34]  The N2K Consortium. II. A Transiting Hot Saturn around HD 149026 with a Large Dense Core , 2005, astro-ph/0507009.

[35]  D. Charbonneau,et al.  THE CLIMATE OF HD 189733b FROM FOURTEEN TRANSITS AND ECLIPSES MEASURED BY SPITZER , 2010, 1007.4378.

[36]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[37]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[38]  Drake Deming,et al.  A Search for a Sub-Earth-Sized Companion to GJ 436 and a Novel Method to Calibrate Warm Spitzer IRAC Observations , 2010, 1009.0755.

[39]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[40]  Howard Isaacson,et al.  A CORRELATION BETWEEN STELLAR ACTIVITY AND HOT JUPITER EMISSION SPECTRA , 2010, 1004.2702.

[41]  B. Scott Gaudi,et al.  Achieving Better Than 1 Minute Accuracy in the Heliocentric and Barycentric Julian Dates , 2010, 1005.4415.

[42]  A. Burrows,et al.  ATMOSPHERE AND SPECTRAL MODELS OF THE KEPLER-FIELD PLANETS HAT-P-7b AND TrES-2 , 2010, 1006.1660.

[43]  S. Seager,et al.  Exoplanet Atmospheres , 2010 .

[44]  David Charbonneau,et al.  Transit Photometry of the Core-dominated Planet HD 149026b , 2005 .

[45]  I. Hubeny,et al.  A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003 .

[46]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[47]  A. Liddle,et al.  Information criteria for astrophysical model selection , 2007, astro-ph/0701113.

[48]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[49]  David Charbonneau,et al.  THE 8 μm PHASE VARIATION OF THE HOT SATURN HD 149026b , 2009, 0908.1977.

[50]  L. Wasserman,et al.  A Reference Bayesian Test for Nested Hypotheses and its Relationship to the Schwarz Criterion , 1995 .

[51]  D. Saumon,et al.  Atmosphere, Interior, and Evolution of the Metal-rich Transiting Planet HD 149026b , 2006 .

[52]  A. Collier Cameron,et al.  Thermal emission at 4.5 and 8 μm of WASP-17b, an extremely large planet in a slightly eccentric orbit , 2011, 1101.5620.

[53]  S. Seager,et al.  A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES , 2009, 0910.1347.

[54]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[55]  Drake Deming,et al.  Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b , 2010, Nature.

[56]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo in Practice: A Roundtable Discussion , 1998 .

[57]  Drake Deming,et al.  Infrared radiation from an extrasolar planet , 2005, Nature.

[58]  David Charbonneau,et al.  Theoretical Spectral Models of the Planet HD 209458b with a Thermal Inversion and Water Emission Bands , 2007, 0709.3980.