A note on moment generating functions
暂无分享,去创建一个
In this note, we show that if a sequence of moment generating functions Mn(t) converges pointwise to a moment generating function M(t) for all t in some open interval of R, not necessarily containing the origin, then the distribution functions Fn (corresponding to Mn) converge weakly to the distribution function F (corresponding to M). The proof uses the basic classical result of Curtiss [1942. A note on the theory of moment generating functions. Ann. Math. Statist. 13 (4), 430-433].
[1] Ljuben S. Mutafchiev. Large Distinct Part Sizes in a Random Integer Partition , 2000 .
[2] H. Cramér. Random variables and probability distributions , 1937 .
[3] P. Levy. Théorie de l'addition des variables aléatoires , 1955 .
[4] J. Curtiss. A Note on the Theory of Moment Generating Functions , 1942 .