Bruhat intervals as rooks on skew Ferrers boards

We characterise the permutations @p such that the elements in the closed lower Bruhat interval [id,@p] of the symmetric group correspond to non-taking rook configurations on a skew Ferrers board. It turns out that these are exactly the permutations @p such that [id,@p] corresponds to a flag manifold defined by inclusions, studied by Gasharov and Reiner. Our characterisation connects the Poincare polynomials (rank-generating function) of Bruhat intervals with q-rook polynomials, and we are able to compute the Poincare polynomial of some particularly interesting intervals in the finite Weyl groups A"n and B"n. The expressions involve q-Stirling numbers of the second kind, and for the group A"n putting q=1 yields the poly-Bernoulli numbers defined by Kaneko.

[1]  Mike Develin Rook Poset Equivalence of Ferrers Boards , 2006, Order.

[2]  C. Chevalley,et al.  Sur certains groupes simples , 1955 .

[3]  Daya-Nand Verma,et al.  Möbius inversion for the Bruhat ordering on a Weyl group , 1971 .

[4]  Axel Hultman,et al.  Bruhat intervals of length 4 in Weyl groups , 2003, J. Comb. Theory, Ser. A.

[5]  A. Mitchell The inverse rook problem on Ferrers boards , 2004, math/0407007.

[6]  D. White,et al.  Rook theory. I. Rook equivalence of Ferrers boards , 1975 .

[7]  Federico Incitti More on the combinatorial invariance of Kazhdan-Lusztig polynomials , 2007, J. Comb. Theory, Ser. A.

[8]  Nathan Reading On the structure of Bruhat order , 2002 .

[9]  A. Bjorner,et al.  On the shape of Bruhat intervals , 2005, math/0508022.

[10]  Kequan Ding,et al.  Rook placements and cellular decomposition of partition varieties , 1997, Discret. Math..

[11]  L. Lovász Combinatorial problems and exercises , 1979 .

[12]  Masanobu Kaneko,et al.  On Poly-Bernoulli numbers , 1999 .

[13]  A. Björner,et al.  Combinatorics of Coxeter Groups , 2005 .

[14]  Seok-Zun Song,et al.  Root Polynomials to and From Permanents , 2003, Discret. Math..

[15]  Nathan Reading The cd-index of Bruhat Intervals , 2004, Electron. J. Comb..

[16]  Victor Reiner,et al.  Cohomology of Smooth Schubert Varieties in Partial Flag Manifolds , 2002 .

[17]  Jeffrey B. Remmel,et al.  Q-counting rook configurations and a formula of frobenius , 1986, J. Comb. Theory A.

[18]  Federico Incitti On the combinatorial invariance of Kazhdan-Lusztig polynomials , 2006, J. Comb. Theory, Ser. A.

[19]  Michelle L. Wachs,et al.  Bruhat Order of Coxeter Groups and Shellability , 1982 .

[20]  S. Launois Combinatorics of H-primes in quantum matrices , 2005, math/0501010.

[21]  Robert Steinberg,et al.  Endomorphisms of linear algebraic groups , 1968 .

[22]  Louis Solomon,et al.  The orders of the finite Chevalley groups , 1966 .