Low-rank density-matrix evolution for noisy quantum circuits

[1]  Utkarsh,et al.  A software simulator for noisy quantum circuits , 2019, International Journal of Modern Physics C.

[2]  Ryan Babbush,et al.  Low rank representations for quantum simulation of electronic structure , 2018, npj Quantum Information.

[3]  C. G. Almudever,et al.  Realistic simulation of quantum computation using unitary and measurement channels , 2020, 2005.06337.

[4]  Bill Fefferman,et al.  Efficient classical simulation of noisy random quantum circuits in one dimension , 2020, Quantum.

[5]  X. Waintal,et al.  What Limits the Simulation of Quantum Computers? , 2020, Physical Review X.

[6]  Fabio Baruffa,et al.  Intel Quantum Simulator: a cloud-ready high-performance simulator of quantum circuits , 2020, Quantum Science and Technology.

[7]  Steven T. Flammia,et al.  Efficient learning of quantum noise , 2019, Nature Physics.

[8]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[9]  Stephan Eidenbenz,et al.  Deterministic Preparation of Dicke States , 2019, FCT.

[10]  T. Martínez,et al.  Quantum Computation of Electronic Transitions Using a Variational Quantum Eigensolver. , 2019, Physical review letters.

[11]  A. H. Werner,et al.  Randomized Benchmarking for Individual Quantum Gates. , 2018, Physical review letters.

[12]  S. Benjamin,et al.  QuEST and High Performance Simulation of Quantum Computers , 2018, Scientific Reports.

[13]  Lloyd C. L. Hollenberg,et al.  Optimising Matrix Product State Simulations of Shor's Algorithm , 2017, Quantum.

[14]  Rupak Biswas,et al.  From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz , 2017, Algorithms.

[15]  Franck Cappello,et al.  Memory-Efficient Quantum Circuit Simulation by Using Lossy Data Compression , 2018, ArXiv.

[16]  Franck Cappello,et al.  Amplitude-Aware Lossy Compression for Quantum Circuit Simulation , 2018, ArXiv.

[17]  Anastasios Kyrillidis,et al.  Provable compressed sensing quantum state tomography via non-convex methods , 2018, npj Quantum Information.

[18]  Lee Gomes,et al.  Quantum computing: Both here and not here , 2018, IEEE Spectrum.

[19]  Xia Yang,et al.  64-qubit quantum circuit simulation. , 2018, Science bulletin.

[20]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[21]  Gil Refael,et al.  Quantum dynamics of thermalizing systems , 2017, 1707.01506.

[22]  L. Pezzè,et al.  Quantum metrology with nonclassical states of atomic ensembles , 2016, Reviews of Modern Physics.

[23]  John A. Gunnels,et al.  Breaking the 49-Qubit Barrier in the Simulation of Quantum Circuits , 2017, 1710.05867.

[24]  Shi-Jie Wei,et al.  Efficient universal quantum channel simulation in IBM’s cloud quantum computer , 2017, Science China Physics, Mechanics & Astronomy.

[25]  Xiang Fu,et al.  QX: A high-performance quantum computer simulation platform , 2017, Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.

[26]  A. Houck,et al.  Observation of a Dissipative Phase Transition in a One-Dimensional Circuit QED Lattice , 2016, Physical Review X.

[27]  F. Diker Deterministic construction of arbitrary $W$ states with quadratically increasing number of two-qubit gates , 2016, 1606.09290.

[28]  David Gosset,et al.  Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates. , 2016, Physical review letters.

[29]  C. Butucea,et al.  Spectral thresholding quantum tomography for low rank states , 2015, 1504.08295.

[30]  G. Crooks On Measures of Entropy and Information , 2015 .

[31]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[32]  Richard Jozsa,et al.  Classical simulation complexity of extended Clifford circuits , 2013, Quantum Inf. Comput..

[33]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[34]  P. Rouchon,et al.  Low-rank numerical approximations for high-dimensional Lindblad equations , 2013 .

[35]  Pierre Alquier,et al.  Rank penalized estimation of a quantum system , 2012, 1206.1711.

[36]  G. Guo,et al.  Efficient numerical method to calculate the three-tangle of mixed states , 2009, 1001.0067.

[37]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[38]  Martin Plesch,et al.  Efficient compression of quantum information , 2009, 0907.1764.

[39]  M Paternostro,et al.  Experimental realization of Dicke states of up to six qubits for multiparty quantum networking. , 2009, Physical review letters.

[40]  H. Weimer,et al.  Investigation of dephasing rates in an interacting Rydberg gas , 2008, 0811.4185.

[41]  Angelo Bassi,et al.  Noise gates for decoherent quantum circuits , 2008, 0802.1639.

[42]  I. Kassal,et al.  Polynomial-time quantum algorithm for the simulation of chemical dynamics , 2008, Proceedings of the National Academy of Sciences.

[43]  Avatar Tulsi,et al.  Quantum computers can search rapidly by using almost any selective transformation , 2007, 0711.4299.

[44]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[45]  N. Yoran,et al.  Efficient classical simulation of the approximate quantum Fourier transform , 2006, quant-ph/0611241.

[46]  D. Browne Efficient classical simulation of the quantum Fourier transform , 2006, quant-ph/0612021.

[47]  F. Nori,et al.  Decoherence in a scalable adiabatic quantum computer , 2006, quant-ph/0608212.

[48]  G. Vidal,et al.  Classical simulation of quantum many-body systems with a tree tensor network , 2005, quant-ph/0511070.

[49]  J. Emerson,et al.  Scalable noise estimation with random unitary operators , 2005, quant-ph/0503243.

[50]  R. Handel,et al.  Quantum projection filter for a highly nonlinear model in cavity QED , 2005, quant-ph/0503222.

[51]  Seth Lloyd,et al.  Quantum process tomography of the quantum Fourier transform. , 2004, The Journal of chemical physics.

[52]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[53]  G. Vidal Efficient simulation of one-dimensional quantum many-body systems. , 2003, Physical review letters.

[54]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[55]  J. Kubiatowicz,et al.  A Design Overview for a Simulation Infrastructure for Exploring Quantum Architectures , 2003 .

[56]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[57]  J. Emerson,et al.  Fidelity decay as an efficient indicator of quantum chaos. , 2002, Physical review letters.

[58]  K. Nemoto,et al.  Efficient classical simulation of continuous variable quantum information processes. , 2001, Physical review letters.

[59]  Andrew M. Childs,et al.  Universal simulation of Markovian quantum dynamics , 2000, quant-ph/0008070.

[60]  M. Murao,et al.  Quantum telecloning and multiparticle entanglement , 1998, quant-ph/9806082.

[61]  Lov K. Grover A framework for fast quantum mechanical algorithms , 1997, STOC '98.

[62]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[63]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[64]  Gardiner,et al.  Decoherence, continuous observation, and quantum computing: A cavity QED model. , 1995, Physical review letters.

[65]  P. Shor,et al.  Quantum Computers, Factoring, and Decoherence , 1995, Science.

[66]  Klaus Mølmer,et al.  A Monte Carlo wave function method in quantum optics , 1993, Optical Society of America Annual Meeting.

[67]  K. Mølmer,et al.  Wave-function approach to dissipative processes in quantum optics. , 1992, Physical review letters.

[68]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[69]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .