New ⁎-clean finite group rings under the conjugate involution

Abstract Let G be a finite abelian group and F q 2 be a finite field of order q 2 . The conjugate involution ⁎ is defined by ⁎ : F q 2 G → F q 2 G , ∑ r g g ↦ ∑ r g q g − 1 . In this paper, we completely characterize when a group algebra F q 2 G is a ⁎-clean ring under the conjugate involution.

[1]  Gregory Karpilovsky,et al.  Jacobson radical of group algebras , 2012, North-Holland mathematics studies.

[2]  Shudi Yang,et al.  The weight distributions of two classes of p-ary cyclic codes with few weights , 2015, Finite Fields Their Appl..

[3]  Gurmeet K. Bakshi,et al.  Minimal cyclic codes of length pnq , 2003 .

[5]  Rudolf Lide,et al.  Finite fields , 1983 .

[6]  W. K. Nicholson Lifting idempotents and exchange rings , 1977 .

[7]  Dongchun Han,et al.  On ∗-clean group rings over abelian groups , 2017 .

[8]  Sudhir Batra,et al.  Some cyclic codes of length 2pn , 2011, Des. Codes Cryptogr..

[9]  Chengju Li,et al.  The minimum Hamming distances of irreducible cyclic codes , 2014, Finite Fields Their Appl..

[10]  Lia Vaš,et al.  -Clean Rings; Some Clean and Almost Clean Baer -rings and von Neumann Algebras , 2010, 1103.3865.

[11]  Yansheng Wu,et al.  ∗-Cleanness of finite group rings , 2017 .

[12]  Pingzhi Yuan,et al.  On *-Clean Group Rings II , 2016 .

[13]  Qin Yue,et al.  Primitive idempotents of irreducible cyclic codes and self-dual cyclic codes over Galois rings , 2017, Discret. Math..

[14]  Yuanlin Li,et al.  On *-clean group rings , 2015 .

[15]  Yiqiang Zhou,et al.  ON STRONGLY ∗-CLEAN RINGS , 2011 .

[16]  Qin Yue,et al.  The primitive idempotents and weight distributions of irreducible constacyclic codes , 2018, Des. Codes Cryptogr..

[17]  Chunming Tang,et al.  A construction of linear codes and their complete weight enumerators , 2017, Finite Fields Their Appl..

[18]  C. Milies,et al.  An introduction to group rings , 2002 .

[19]  Manju Pruthi,et al.  Minimal Codes of Prime-Power Length , 1997 .

[20]  Gaohua Tang,et al.  On *-clean non-commutative group rings , 2016 .

[21]  Raul Antonio Ferraz,et al.  Idempotents in group algebras and minimal abelian codes , 2007, Finite Fields Their Appl..

[22]  Dongdai Lin,et al.  Complete weight enumerators of two classes of linear codes , 2017, Discret. Math..

[23]  Sergio R. López-Permouth,et al.  Cyclic Codes over the Integers Modulopm , 1997 .

[24]  Yuanlin Li,et al.  Some ∗-Clean Group Rings , 2015 .

[25]  Chengju Li,et al.  Irreducible cyclic codes of length 4pn and 8pn , 2015, Finite Fields Their Appl..

[26]  Fabio Enrique Brochero Martínez,et al.  Structure of finite dihedral group algebra , 2014, Finite Fields Their Appl..

[27]  Manju Pruthi,et al.  Minimal Cyclic Codes of Length 2pn , 1999 .