β-Lactam plus aminoglycoside or fluoroquinolone combination versus β-lactam monotherapy for Pseudomonas aeruginosa infections: a meta-analysis.

[1]  M. Falagas,et al.  Clinical outcomes with extended or continuous versus short-term intravenous infusion of carbapenems and piperacillin/tazobactam: a systematic review and meta-analysis. , 2013, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[2]  M. Falagas,et al.  Impact of Antibiotic MIC on Infection Outcome in Patients with Susceptible Gram-Negative Bacteria: a Systematic Review and Meta-Analysis , 2012, Antimicrobial Agents and Chemotherapy.

[3]  M. Falagas,et al.  Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. , 2012, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[4]  J. Rodríguez-Baño,et al.  β-Lactam/β-lactam inhibitor combinations for the treatment of bacteremia due to extended-spectrum β-lactamase-producing Escherichia coli: a post hoc analysis of prospective cohorts. , 2012, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[5]  M. Falagas,et al.  Impact of Definitive Therapy with Beta-Lactam Monotherapy or Combination with an Aminoglycoside or a Quinolone for Pseudomonas aeruginosa Bacteremia , 2011, PloS one.

[6]  L. Leibovici,et al.  Clinical implications of β-lactam-aminoglycoside synergism: systematic review of randomised trials. , 2011, International journal of antimicrobial agents.

[7]  J. Wain,et al.  The Influence of Reduced Susceptibility to Fluoroquinolones in Salmonella enterica Serovar Typhi on the Clinical Response to Ofloxacin Therapy , 2011, PLoS neglected tropical diseases.

[8]  S. Lapinsky,et al.  Early combination antibiotic therapy yields improved survival compared with monotherapy in septic shock: A propensity-matched analysis* , 2010, Critical care medicine.

[9]  Anand Kumar,et al.  A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: A meta-analytic/meta-regression study , 2010, Critical care medicine.

[10]  Raymond P. Smith,et al.  Outcomes of extended infusion piperacillin/tazobactam for documented Gram-negative infections. , 2009, Diagnostic microbiology and infectious disease.

[11]  M. Chaudhary,et al.  Efficacy and safety evaluation of fixed dose combination of cefepime and amikacin in comparison with cefepime alone in treatment of nosocomial pneumonia patients. , 2008, Current clinical pharmacology.

[12]  R. McLeod,et al.  Empiric antibiotic therapy for suspected ventilator-associated pneumonia: A systematic review and meta-analysis of randomized trials , 2008, Critical care medicine.

[13]  Kathleen A. Shutt,et al.  Failure of Current Cefepime Breakpoints To Predict Clinical Outcomes of Bacteremia Caused by Gram-Negative Organisms , 2007, Antimicrobial Agents and Chemotherapy.

[14]  J. Rello,et al.  Optimal management therapy for Pseudomonas aeruginosa ventilator-associated pneumonia: An observational, multicenter study comparing monotherapy with combination antibiotic therapy* , 2007, Critical care medicine.

[15]  G. Drusano,et al.  Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. , 2007, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[16]  K. Itani,et al.  Randomized, Open-Label, Comparative Study of Piperacillin-Tazobactam Administered by Continuous Infusion versus Intermittent Infusion for Treatment of Hospitalized Patients with Complicated Intra-Abdominal Infection , 2006, Antimicrobial Agents and Chemotherapy.

[17]  A. Endimiani,et al.  Pseudomonas aeruginosa bloodstream infections: risk factors and treatment outcome related to expression of the PER-1 extended-spectrum beta-lactamase , 2006, BMC infectious diseases.

[18]  L. Lorente,et al.  Meropenem by Continuous Versus Intermittent Infusion in Ventilator-Associated Pneumonia due to Gram-Negative Bacilli , 2006, The Annals of pharmacotherapy.

[19]  M. Falagas,et al.  Effect of aminoglycoside and beta-lactam combination therapy versus beta-lactam monotherapy on the emergence of antimicrobial resistance: a meta-analysis of randomized, controlled trials. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[20]  M. Kollef,et al.  Pseudomonas aeruginosa Bloodstream Infection: Importance of Appropriate Initial Antimicrobial Treatment , 2005, Antimicrobial Agents and Chemotherapy.

[21]  J. Handelsman,et al.  Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A meta-analysis. , 2004, The Lancet. Infectious diseases.

[22]  Leonard Leibovici,et al.  β lactam monotherapy versus β lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis of randomised trials , 2004, BMJ : British Medical Journal.

[23]  M. Kollef,et al.  Hospital mortality for patients with bacteremia due to Staphylococcus aureus or Pseudomonas aeruginosa. , 2004, Chest.

[24]  L. Leibovici,et al.  β lactam monotherapy versus β lactam-aminoglycoside combination therapy for fever with neutropenia: systematic review and meta-analysis , 2003, BMJ : British Medical Journal.

[25]  G. Bucaneve,et al.  Monotherapy or aminoglycoside-containing combinations for empirical antibiotic treatment of febrile neutropenic patients: a meta-analysis. , 2002, The Lancet. Infectious diseases.

[26]  F. Mandelli,et al.  A multicenter, double-blind, placebo-controlled trial comparing piperacillin-tazobactam with and without amikacin as empiric therapy for febrile neutropenia. , 2001, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[27]  G. Samonis,et al.  Recent experience with Pseudomonas aeruginosa bacteremia in patients with cancer: Retrospective analysis of 245 episodes. , 2000, Archives of internal medicine.

[28]  V. Valtonen,et al.  Factors Associated with Improved Outcome of Pseudomonas aeruginosa Bacteremia in a Finnish University Hospital , 1998, European Journal of Clinical Microbiology and Infectious Diseases.

[29]  D. Cook,et al.  Does quality of reports of randomised trials affect estimates of intervention efficacy reported in meta-analyses? , 1998, The Lancet.

[30]  D. Greenberg,et al.  Bacteriologic response to oral cephalosporins: are established susceptibility breakpoints appropriate in the case of acute otitis media? , 1997, The Journal of infectious diseases.

[31]  L. Leibovici,et al.  Monotherapy versus beta-lactam-aminoglycoside combination treatment for gram-negative bacteremia: a prospective, observational study , 1997, Antimicrobial agents and chemotherapy.

[32]  A. Gurtman,et al.  Pseudomonas aeruginosa bacteremia in patients with AIDS. , 1994, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[33]  D. Pittet,et al.  Prospective randomized comparison of imipenem monotherapy with imipenem plus netilmicin for treatment of severe infections in nonneutropenic patients , 1994, Antimicrobial Agents and Chemotherapy.

[34]  E. Anaissie,et al.  A comparison of imipenem to ceftazidime with or without amikacin as empiric therapy in febrile neutropenic patients. , 1992, Archives of internal medicine.

[35]  K. Olms,et al.  Ceftazidim mit und ohne Tobramycin versus Azlocillin plus Tobramycin in der Therapie bronchopulmonaler Infektionen bei Intensivpatienten , 1987, Infection.

[36]  L. Elting,et al.  Aztreonam therapy in neutropenic patients with cancer. , 1986, The American journal of medicine.

[37]  H. Giamarellou Aminoglycosides plus beta-lactams against gram-negative organisms. Evaluation of in vitro synergy and chemical interactions. , 1986, The American journal of medicine.

[38]  D. Johnson,et al.  Efficacy of single-agent therapy with azlocillin, ticarcillin, and amikacin and beta-lactam/amikacin combinations for treatment of Pseudomonas aeruginosa bacteremia in granulocytopenic rats. , 1986, The American journal of medicine.

[39]  L. Elting,et al.  Pseudomonas bacteremia. Retrospective analysis of 410 episodes. , 1985, Archives of internal medicine.

[40]  M. Piccart,et al.  Single-drug versus combination empirical therapy for gram-negative bacillary infections in febrile cancer patients with and without granulocytopenia , 1984, Antimicrobial Agents and Chemotherapy.

[41]  H. Giamarellou,et al.  In vitro synergistic activities of aminoglycosides and new beta-lactams against multiresistant Pseudomonas aeruginosa , 1984, Antimicrobial Agents and Chemotherapy.

[42]  F. Colardyn,et al.  Reappraisal of attributable mortality in critically ill patients with nosocomial bacteraemia involving Pseudomonas aeruginosa. , 2003, The Journal of hospital infection.

[43]  G. Pizzolo,et al.  Improved prognosis of Pseudomonas aeruginosa bacteremia in 127 consecutive neutropenic patients with hematologic malignancies. , 1998, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[44]  R. Auckenthaler,et al.  Emergence of resistance after therapy with antibiotics used alone or combined in a murine model. , 1986, The Journal of antimicrobial chemotherapy.

[45]  L. Elting,et al.  A randomized study of ceftazidime compared to ceftazidime and tobramycin for the treatment of infections in cancer patients. , 1983, The Journal of antimicrobial chemotherapy.